单调栈——AcWing.830单调栈

单调栈

定义

单调栈是一种特殊的数据结构,栈内元素保持某种单调性(通常是单调递增或单调递减)。

运用情况

  • 求解下一个更大元素或下一个更小元素。
  • 计算每个元素左边或右边第一个比它大或小的元素。

注意事项

  • 要明确单调栈是递增还是递减。
  • 注意处理边界情况。
  • 考虑时间复杂度:单调栈的时间复杂度通常为 O(n),但在某些情况下可能需要进一步优化。

解题思路

以求解下一个更大元素为例:

  1. 从左到右遍历数组。
  2. 当栈为空或者当前元素大于等于栈顶元素时,将当前元素入栈。
  3. 当当前元素小于栈顶元素时,栈顶元素出栈,此时当前元素就是栈顶元素的下一个更大元素。

通过以上步骤,可以在一次遍历中找到每个元素左侧第一个比它大的元素,时间复杂度为 O(n)。

例如,对于数组 [1, 3, 2, 4],使用单调递增栈来求解下一个更大元素:

  • 先将 1 入栈。
  • 3 大于 1,将 1 出栈,3 入栈,此时 3 的下一个更大元素是无。
  • 2 小于 3,2 入栈。
  • 4 大于 2 和 3,2 出栈,4 是 2 的下一个更大元素,3 出栈,4 是 3 的下一个更大元素,然后 4 入栈。

处理栈为空的情况

  1. 直接返回:如果在栈为空的情况下,没有其他有效的操作或结果可以返回,那么可以直接返回一个特定的值或标志,表示栈为空的情况。
  2. 初始化或重置:有些情况下,可以在栈为空时进行一些初始化或重置的操作,例如将栈的一些属性设置为初始值,或者将相关的数据结构进行初始化。
  3. 抛出异常:如果栈为空的情况被视为一种错误或异常情况,可以抛出一个异常来通知调用者进行相应的处理。
  4. 特殊逻辑处理:根据具体的问题需求,可以在栈为空时执行一些特殊的逻辑处理。这可能涉及到对问题的特殊判断或采取其他替代的计算方式。

例如,在寻找左侧第一个比当前元素大的元素的问题中,当栈为空时,可以直接将当前元素入栈,因为此时没有左侧更大的元素。

AcWing.830单调栈

题目描述

830. 单调栈 - AcWing题库

运行代码

#include<iostream>
using namespace std;
const int N = 1e5+ 10;
int main()
{
	int n,i,tt,stk[N],top=-1;
	cin >> n;
	while (n--)
	{
		int x;
		cin>>x;
	    while(tt&&stk[tt]>=x){tt--;}
	    if(tt) cout<<stk[tt]<<' ';
	    else cout<<-1<<' ';
	    stk[++tt]=x;
	}
}

代码思路

  1. 初始化:定义了变量n为序列长度,i为循环变量(未使用),tt作为栈顶指针初始化为-1,stk[]作为单调栈存储元素的下标,top初始化为-1以标记栈为空。

  2. 输入与循环:首先读取序列长度n,然后进入循环,每次循环读取一个元素x

  3. 单调栈处理

    • 使用while循环检查栈顶元素(实际上为之前处理过的元素对应的下标)是否大于等于当前元素x。如果是,则这些元素不可能是后续元素的下一个更大元素,因此从栈中弹出,更新栈顶指针tt
    • 弹出操作完成后,如果栈非空(即tt不为-1),说明栈顶元素是当前x的下一个更大元素,输出该元素的值(注意,代码直接输出了栈顶的值,实际上是栈中元素对应的原序列值,这里可能存在误导,因为栈中存储的是下标)。
    • 如果栈空,说明当前元素右边没有更大的元素,输出-1。
    • 最后,将当前元素的下标入栈,因为后续的元素可能以它为下一个更大元素。
  4. 循环直至所有元素处理完毕

改进建议

  1. 变量命名:变量命名可以更加明确,例如将tttop统一为更清晰的名称,如stackTop,将stk改为更具描述性的名称,如indexStack,并明确区分存储元素值和下标的栈。

  2. 输出逻辑调整:代码直接从栈中输出元素值是不准确的,应该存储元素值而不是下标,并在需要时从原序列中提取元素值输出。或者,在入栈时直接存储元素值,并调整输出逻辑。

  3. 添加注释:在关键操作前后添加注释,解释每部分代码的功能,提高代码可读性。

  4. 考虑边界情况:虽然题目描述中可能默认输入合法,但在实际编程中,增加对输入数据合法性的检查是一个好习惯。

  5. 输出格式:根据实际需求,可能需要在所有元素处理完后输出一个换行符,以符合常见输出格式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

筱姌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值