数论——线性同余方程、扩欧求解线性同余方程、线性组合、原根求解

2 篇文章 0 订阅
线性同余方程

线性同余方程是形如  的方程,其中a 、b、m 为给定的整数,x 是未知整数。

扩欧求解线性同余方程
void mod_slover(int a, int b, int n) {
    int d, x, y, x0;
    d = extend_gcd(a, n, x, y);
    if (b % d != 0)
        cout << "no answer";
    else
        x0 = x * (b / d) % n;
    for (int i = 0; i <= d - 1; i++)
        cout << x0 + i * (n / d) % n;
}
#include <iostream>

// 扩展欧几里得算法
int extendedEuclidean(int a, int b, int& x, int& y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    }

    int x1, y1;
    int gcd = extendedEuclidean(b, a % b, x1, y1);

    x = y1;
    y = x1 - (a / b) * y1;

    return gcd;
}

// 求解线性同余方程
bool solveLinearCongruence(int a, int b, int m, int& x) {
    int x0, y0;
    int gcd = extendedEuclidean(a, m, x0, y0);

    if (b % gcd!= 0) {
        return false;  // 无解
    }

    int mod = m / gcd;
    x = (x0 * (b / gcd)) % mod;
    if (x < 0) {
        x += mod;  // 保证解为正数
    }

    return true;
}

int main() {
    int a = 3, b = 2, m = 5;
    int x;

    if (solveLinearCongruence(a, b, m, x)) {
        std::cout << "Solution of " << a << "x ≡ " << b << " (mod " << m << ") is: x = " << x << std::endl;
    } else {
        std::cout << "No solution exists." << std::endl;
    }

    return 0;
}
  • extendedEuclidean 函数用于计算两个数的最大公约数,并同时得到一组满足  的解 x0 和 y0 。

  • solveLinearCongruence 函数首先调用 extendedEuclidean 计算 a 和 m 的最大公约数 gcd 。如果 b 不能被 gcd 整除,则方程无解。

  • 若有解,计算出一个特解 x ,并通过取模操作和调整使其落在合法范围内(大于等于 0 且小于 m / gcd )。

欧拉定理解线性同余方程

#include <iostream>

// 计算欧拉函数
int eulerPhi(int n) {
    int result = n;
    for (int i = 2; i * i <= n; i++) {
        if (n % i == 0) {
            result -= result / i;
            while (n % i == 0) {
                n /= i;
            }
        }
    }
    if (n > 1) {
        result -= result / n;
    }
    return result;
}

// 快速幂取模
int quickPow(int a, int b, int mod) {
    int res = 1;
    while (b) {
        if (b & 1) {
            res = (long long)res * a % mod;
        }
        a = (long long)a * a % mod;
        b >>= 1;
    }
    return res;
}

// 利用欧拉定理求解线性同余方程
bool solveLinearCongruenceEuler(int a, int b, int m, int& x) {
    if (std::__gcd(a, m)!= 1) {
        return false;  // a 和 m 不互质,无解
    }

    int phi = eulerPhi(m);
    int invA = quickPow(a, phi - 1, m);  // a 的逆元

    x = (long long)invA * b % m;
    return true;
}

int main() {
    int a = 3, b = 2, m = 5;
    int x;

    if (solveLinearCongruenceEuler(a, b, m, x)) {
        std::cout << "Solution of " << a << "x ≡ " << b << " (mod " << m << ") is: x = " << x << std::endl;
    } else {
        std::cout << "No solution exists." << std::endl;
    }

    return 0;
}
  • eulerPhi 函数用于计算给定整数的欧拉函数值,通过遍历质因数并进行相应的计算得到结果。

  • quickPow 函数用于快速计算幂的模运算。

  • solveLinearCongruenceEuler 函数首先判断  a和m  是否互质,如果不互质则方程无解。然后计算  的欧拉函数值,找到  a的逆元,最后计算出 x 的值。

线性组合
线性同余方程组(模互素)

#include <iostream>

// 扩展欧几里得算法
int extendedEuclidean(int a, int b, int& x, int& y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    }

    int x1, y1;
    int gcd = extendedEuclidean(b, a % b, x1, y1);

    x = y1;
    y = x1 - (a / b) * y1;

    return gcd;
}

// 计算模逆元
int modInverse(int a, int m) {
    int x, y;
    int gcd = extendedEuclidean(a, m, x, y);
    if (gcd!= 1) {
        std::cout << "Inverse doesn't exist" << std::endl;
        return -1;
    } else {
        return (x % m + m) % m;
    }
}

// 中国剩余定理求解
int chineseRemainderTheorem(int a[], int m[], int n) {
    int M = 1;
    for (int i = 0; i < n; i++) {
        M *= m[i];
    }

    int x = 0;
    for (int i = 0; i < n; i++) {
        int Mi = M / m[i];
        int invMi = modInverse(Mi, m[i]);
        x += a[i] * Mi * invMi;
    }

    return x % M;
}

int main() {
    int a[] = {2, 3, 2};
    int m[] = {3, 5, 7};
    int n = sizeof(a) / sizeof(a[0]);

    int result = chineseRemainderTheorem(a, m, n);
    std::cout << "Solution of the system is: " << result << std::endl;

    return 0;
}
中国剩余定理

int CRT(const int a[],const int m[],int n){
    int M = 1, ret = 0;
    for (int i = 1; i <= n; ++i)
        M *= m[i];
    for (int i = 1; i <= n; ++i) {
        int Mi = M / m[i], ti = inv(Mi, m[i]);
        ret = (ret + a[i] * a[i] * Mi * ti) % M;
    }
    return ret;
}
int inverse(int a, int b) {
    int x, y;
    excend_gcd(a, b, x, y);
    return x;
}

第一类高次同余方程
第二类高次同余方程
 原根的解法
【模板】原根

登录—专业IT笔试面试备考平台_牛客网

#include<iostream>
#include<algorithm>
#include<bits/stdc++.h>
#define endl "\n"
using namespace std;
using ll = long long;
const int N=1e6+7;
int pr[N],ph[N],fc[9],u[11],v[11],a[N];
bool f[N],b[N],p[N],q[N];
void init(int n){//线性筛,b数组记录是否有原根
	b[2]=b[4]=ph[1]=1;
	int i,j,k,t=0;
	for(i=2;i<=n;++i){
		if(!f[i])pr[++t]=i,ph[i]=i-1;
		for(j=1;k=i*pr[j],k<=n&&j<=t;++j){
			f[k]=1;
			if(!(i%pr[j])){
				ph[k]=ph[i]*pr[j];
				break;
			}
			ph[k]=ph[i]*ph[pr[j]];
		}
	}
	for(i=2;i<=t;++i){
		for(j=1;j*1ll*pr[i]<=n;b[j*=pr[i]]=1);
		for(j=2;j*1ll*pr[i]<=n;b[j*=pr[i]]=1);
	}
}
int qp(int a,int b,int p){
	int r=1;
	while(b){
		if(b&1)r=r*1ll*a%p;
		a=a*1ll*a%p,b>>=1;
	}
	return r;
}
int main(){
	ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
	int T,n=0,m,d,i,j,k,t,o,s;
	cin>>T;
	for(i=1;i<=T;++i)cin>>u[i]>>v[i],n=n>u[i]?n:u[i];
	init(n);
	for(o=1;o<=T;++o){
		n=u[o],d=v[o];
		if(!b[n]){
			cout<<0<<"\n"<<endl;//如果没有原根;
			continue;
		}
		for(i=1,j=m=ph[n],t=0;1ll*pr[i]*pr[i]<=j;++i){
			if(!(j%pr[i])){
				fc[++t]=s=pr[i];//求出phi(n)的质因子;
				do j/=s;while(!(j%s));
				for(k=s;k<=m;k+=s)p[k]=1;
			}
		}
		if(j>1){
			fc[++t]=j;
			for(k=j;k<=m;k+=j)p[k]=1;
		}
		for(j=1;;++j){
			while(qp(j,m,n)!=1)++j;
			for(i=1;i<=t&&qp(j,m/fc[i],n)!=1;++i);
			if(i>t)break;//t个质因数都不符合
		}//快速幂求出最小原根j;
		for(t=j,i=1,s=0;i<=m;++i,t=t*1ll*j%n)
			if(!p[i])q[t]=1,++s;else p[i]=0;//通过最小原根求出所有原根
		cout<<s<<endl;
		for(i=1,j=0;i<n;++i){
			if(q[i]){
				q[i]=0,++j;
				if(j==d)j=0,cout<<i<<" ";
			}
		}//排序后从小到大输出;
		cout<<endl;
	}
	return 0;
}
  1. init 函数:

    • 这是一个线性筛法的函数,用于计算小于等于 n 的质数 pr 和每个数的欧拉函数值 ph,同时通过 b 数组标记是否有原根。
    • 首先对一些特殊情况(如 2 和 4)进行初始化。
    • 然后通过两层循环,筛选出质数并计算对应的欧拉函数值。对于每个数 i 和其对应的质数 pr[j],根据是否整除的情况计算 ph[k]
    • 接着通过另外的循环标记有原根的数。
  2. qp 函数:这是一个快速幂函数,用于计算 a 的 b 次幂对 p 取模的结果。

  3. main 函数:

    • 首先进行输入输出的同步设置。
    • 读入测试用例的数量 T 和每个用例中的 u[i] 和 v[i],并确定最大的 n 值。
    • 调用 init 函数进行预处理。
    • 对于每个测试用例:如果 n 没有原根,直接输出 0 并继续下一个用例。计算 phi(n) 的质因子并存放在 fc 数组中,同时标记相关的数。通过循环找到最小原根 j 。基于最小原根计算所有原根,统计原根的数量 s 并输出。按照要求输出第 d 个原根。
字符串的最大公约数

力扣1071.字符串的最大公因子

class Solution {
public:
    string gcdOfStrings(string str1, string str2) {
         return str1+str2!=str2+str1?"":str1.substr(0,gcd(str1.size(),str2.size()));
    }
};
  1. str1 + str2 != str2 + str1:这检查str1后跟str2是否与str2后跟str1不相等。如果它们相等,这意味着一个字符串可以被看作是另一个的旋转,可能意味着某种重复或模式。

  2. gcd(str1.size(), str2.size()):这计算str1str2长度的最大公约数(GCD)。GCD是能同时整除两者的最大数。

  3. str1.substr(0, gcd(str1.size(), str2.size())):如果第一个条件为真,它会返回str1从索引0开始,长度等于str1str2大小的GCD的子串。这对于找出字符串中的重复模式或重复的基本单元很有用。

如果第一个条件为假(即字符串能够以任意顺序拼接),则返回空字符串""

这种逻辑经常用于解决与字符串模式相关的问题,例如确定一个字符串是否是另一个字符串的旋转,或者找出字符串中最短的重复模式。

  • 16
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

筱姌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值