1. L1、L2正则化 L1正则化是参数的绝对值累加和,L2正则化是参数的平方和。
假设现在只有两个参数要学,蓝色的圆心是误差最小的地方,每条蓝线的误差都一样。正规化的方程就是在黄线上产生的额外误差,黄线和蓝线交点处误差和最小,这也是、正规化后的解。使用L1的后果可能是,只有被保留,L1倾向于选择对结果贡献最大的重要特征。
用批训练的话L1不稳定
1. L1、L2正则化 L1正则化是参数的绝对值累加和,L2正则化是参数的平方和。
假设现在只有两个参数要学,蓝色的圆心是误差最小的地方,每条蓝线的误差都一样。正规化的方程就是在黄线上产生的额外误差,黄线和蓝线交点处误差和最小,这也是、正规化后的解。使用L1的后果可能是,只有被保留,L1倾向于选择对结果贡献最大的重要特征。
用批训练的话L1不稳定