1、求向量组的秩和极大线性无关组
>> a1=[1;2;2;3];
>> a2=[1;4;-3;6];
>> a3=[-2;-6;1;-9];
>> a4=[1;4;-1;7];
>> a5=[4;8;2;9];
>> A=[a1,a2,a3,a4,a5];
>> r=rank(A)
r =
3
向量组的秩为3,因为r<5,所以向量组是线性相关的。
>> [R,j]=rref(A)
R =
1 0 -1 0 4
0 1 -1 0 3
0 0 0 1 -3
0 0 0 0 0
j =
1 2 4
>> A1=A(:,j)
A1 =
1 1 1
2 4 4
2 -3 -1
3 6 7
所以a1,a2,a4是a1,a2,a3,a4,a5的极大线性无关组。
>> R=rref(A)
R =
1 0 -1 0 4
0 1 -1 0 3
0 0 0 1 -3
0 0 0 0 0
于是a3=-a1-a2,a5=4*a1+3*a2-3*a4。
2、求向量空间的基和维数
3、向量组的规范正交化
>> a1=[4;0;-2;-5;-1];
>> a2=[-5;-3;1;4;4];
>> a3=[-4;0;2;5;1];
>> a4=[-1;1;0;3;-1];
>> A=[a1,a2,a3,a4]
A =
4 -5 -4 -1
0 -3 0 1
-2 1 2 0
-5 4 5 3
-1 4 1 -1
>> [R,j]=rref(A)
R =
1 0 -1 0
0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0
j =
1 2 4
>> dim=length(j)
dim =
3
dim L(a1,a2,a3,a4)=3, 其中a1,a2,a4是L(a1,a2,a3,a4)的一个基。
>> P=orth([a1,a2,a4])
P =
-0.6244 0.0635 0.1390
-0.2000 0.5856 -0.2373
0.1932 0.0969 -0.8928
0.6495 0.5240 0.3529
0.3331 -0.6074 -0.0521
所以,这3列是L(a1,a2,a3,a4)的一个规范正交基。
4、求向量空间中的两个基之间的过渡矩阵
5、求向量在给定基下的坐标
>> a1=[1;1;1];
>> a2=[0;1;1];
>> a3=[0;0;1];
>> b1=[1;0;1];
>> b2=[0;0;-1];
>> b3=[1;2;0];
>> A=inv([a1 a2 a3])*[b1 b2 b3]
A =
1 0 1
-1 0 1
1 -1 -2
从a1,a2,a3到b1,b2,b3的过渡矩阵为A。
>> X=[3;2;1];
>> Y=inv(A)*X
Y =
0.5000
-5.5000
2.5000
因此gamma关于b1,b2,b3的坐标为Y。
>> a1=[1;1;1;1];
>> a2=[-1;2;0;1];
>> b1=[0;3;1;2];
>> b2=[-2;1;-1;0];
>> A=[a1 a2]\[b1 b2]
A =
1.0000 -1.0000
1.0000 1.0000
>> B=[b1 b2]\[a1 a2]
B =
0.5000 0.5000
-0.5000 0.5000
>> A*B
ans =
1.0000 -0.0000
-0.0000 1.0000