一加一等于二

文章探讨了计数系统中的周期性和虚数单位的概念,以此关联到数论中的陈氏定理和哥德巴赫猜想。通过分析计数系统的稳定性和周期的偶数特性,作者提出将1视为质数以保持数学定义的连续性,并讨论了偶数可以表示为两个质数之和的不同方式。文章进一步阐述了为何一个偶数不能仅写成一个质数和另一个质数或其乘积之和的情况,并指出这种形式的限制,强调了两个质数之和的普遍适用性。
摘要由CSDN通过智能技术生成

这里当然说的是,一个充分大的偶数总可以写成两个质数之和。

陈景润已经证明,一个充分大的偶数总可以写成两个质数之和或者一个质数和另外两个质数之积之和。我不知道他是如何证明的。但既然他已经走到这一步,我们就试着继续走下去。

虚数单位的定义如下,

也就是说,虚数单位指的是,在以N为周期的计数系统中,比周期略小1的那个最大的数,开n次方之后的结果。一般来说,我们用的是,

这是我们最常用的虚数单位(负一的平方根)。

实际上还有一个更基本的虚数单位,

就是比周期略小1的那个最大的数本身,当我们省略周期不写的时候它就是负一。

说省略周期不写,是严格的说法。一个计数系统若无周期,它就不是一个计数系统。因为每一个数若不重复出现,那么系统就不可能稳定的计数到那个数,所以一个计数系统中的任何一个数值,至少出现过两次。如果一个计数系统永远数下去而其中任何一个数都不会重复两次,那么它就不是一个稳定的计数系统(可预期和已实现不是一回事)。由此来说,构造一个稳定的计数系统,哪怕它只有一个数,比如说1,那么它也至少得重复两次。由此可知,它重复的(总)次数,就是它从0数到最大的那个数的计数次数的至少两倍。比如说一个计数系统可以从0数到9,那么其中的每一个数,都至少重复两次,总共的计数次数就是20次。若达不到20次,那么这个系统就不能说它具有稳定的从0数到9的能力。而从0数到9,这个10就是计数系统的周期,实际发生的计数次数则至少是20次。

可见,一个计数系统若要稳定提供计数能力,它的实际计数次数总是偶数。它可以数数的周期是这个偶数的一半。而数数的能力若作为周期,就(至少)是这个偶数本身。所以一个计数系统的周期,按照能力而言,总是偶数。

假定我们的计数系统只有1个数,那么我们就得到了

可见它的周期为2,而我们知道周期的结束意味着新周期的开始,我们用序数来表示新周期的开始,就可以得到

前面这个1,就是虚数单位,后面的1,可以认为是它的重复或者虚数单位定义中,到周期的距离,由此得到,

也就是说,

当我们的系统扩展计数能力,i1就可以取更多的值,比如计数能力为10,则

当然这也不妨碍

的定义。换句话说,在两种语境中,虚数单位有两个值,一个是相对于0来说的“最后一步”,它总是;另外一个值则是根据具体周期大小来决定,它总是周期减去1。

为什么要减去1或者减去一点什么呢?因为一个周期和下一个周期之间若没有什么分隔,则不可能区分。所以这个1或者更小的数值比如,对于周期来说,就是必要的间隔。若无此间隔,相邻的周期就连在一起而无法区分了。

根据上面的分析可知,一个计数系统,其计数能力的周期总是偶数。但这个偶数作为周期,又总是下一个周期的开始,所以它可以写作为0,那个比周期略微小一点的数,有时候也被认为是周期本身(周期一般来说都特别大,所以小一点 有时可以忽略不记),在整数前提下,我们一般来说把它叫做(其实也可以用别的数,正如后文用到的),也就是说,在下一个周期开始的前一步,在当前周期结束的最后一步。

回到计数系统,这个偶数周期,就完全符合我们所说的充分大的偶数的要求。而最后一步的开始就是-1这个数以及完成最后 一步的1这个数,就构成了这个充分大的偶数。在这个语境中,我们把它叫做0,这样的话,我们就不管这个偶数到底有多大了:多大都行,都符合同样的原则,于是写出,

现在回到数论的问题,我们知道1既不是质数也不是合数,2是质数不是合数,3是质数,4是合数,5是质数等等。

但是我们知道,若,则有

周期的大小为2,也是偶数,符合周期的概念。这时候,1却不是质数,这就无形中破坏了周期以及质数定义的连续性。所以不妨假定1也是质数,那么,不管是充分大还是充分小的偶数,都可以写成两个质数之和了。如果1被接纳称为质数,那么显然任何偶数都至少可以写成两个质数之和或者1个质数和另外一个什么之和,因为1是质数。但我们已经定义了1不是质数,所以这句话就没有办法说出来。

但是我们可以调整一下,比如说,一个偶数总可以写成两个质数之和或者1和某个质数之和,或者1和某两个质数之积之和。也就是说,把1假定为质数涵盖到里面,保证所有定义的连续性。

如果认为1是质数,那么

就有若干可能,比如说它是质数,或者说两个或者更多质数之积。在这个基础上,谈论1+1的问题,我们实际上是在问,对于一个大的偶数,除了这种

的配置之外,还有没有其它的配置使得,

而不是必须要

这是陈氏定理的一个分支。现在如果证明了这个分支不是必须的,就只剩下了

这两个分支,那么哥德巴赫猜想就得到证明了。

我们习惯于从1开始计数,数到一个非常大的自然数,但先前已经论证,计数系统若对于某个数不能计数至少两次,则它就不是一个稳定的计数系统。而一个数会出现两次,就要求它必须有一个上限,超过上限则回环重复。上限可以非常大,但是不能没有。由此我们就知道,一个计数系统,我们可以从1开始正着数数,也可以从-1,也就是最后一个数开始,倒着数数,两者情况是一样的。所以不管是否充分大的偶数,它都是某个周期的一部分,或者说它可以构成一个周期本身,因为这个系统若要稳定计数,它里面的数都必须至少重复两次,由此这个系统虽大,但必有最大值。若我们让0为这个系统最开始的那个数,那么-1也就是本周期最后一个数,就一定是奇数,这样总数才是偶数。但这是对于计数能力的要求,若只是考虑周期只发生一次,则-1不一定是偶数还是奇数。若我们从1开始数,比如1,2,3,4,5,6,那么下一个周期开始还是1的话,周期的长度就是6。可是我们习惯于从0开始一个新的周期,所以是0,1,2,3,4,5,6,0,所以周期的长度就是7,最后一个数可以是6(不是奇数),周期的长度就是6+1=7。当然这个长度不是偶数,我们需要的是0,1,2,3,4,5,0,1,2,3,4,5,最后一个是奇数5,周期的长度是偶数6。

下面我们通过讨论其非必要性,尝试去掉这个分支。

显然,对于任何偶数,

都是成立的,所以这个分支不可能去掉。剩下的就是

这两个分支。现在,假定一个偶数不能写成,

(当然一定能写成的形式,所以不必讨论)

它就只能写成,

让我们看看这样到底有什么问题。既然除了2之外的质数都是奇数,那么,给定偶数,就一定有一个虚数单位,

这个虚数单位显然是奇数,它可以是一个质数或者若干质数之积(合数),我们假定它就是单个质数,那么它就符合了

或者的要求,由此可以认为,若给定如下质数,当然它们同时也是虚数单位,

则可以令

以及,

所以必有,

一系列计算并不重要,其实只是换了名字,

此时已经不只是质数,而且还是各自周期的虚数单位。

现在看,

因为涵盖所有偶数,所以为任意自然数。另外我们知道,若要产生之间并无相互捆绑的关系,这相当于中的函数值决定于独立自变量的变化,这样的话我们就得到了是彼此无关的这种论断。于是,根据无关性的定义,我们就可以应用虚数单位来处理这个方程了。

比如说使用1和作为单位,可令,

可见三个独立变量的正交性或者说无关性并不好,因为和1只有两种单位,而要区分的却是三个变量,两种虚数单位用于区分三个独立变量的能力是不充分的,所以这样处理相当于什么也没做。我们应当使用来做虚数单位,因为它本身至少具有两种形式,再加上单位1则可以在三个维度上区分三个变量,作为三个维数的基存在,分别是

已知,

令,

代入,

对于具有虚数单位因子的前一项(不用理会后面的一项)

来说,除非

是一个平方数,它开方的结果才是整数

否则只有,

才能最终获得整数,但是任意自然数,而不能被限定在能产生平方数的范围之内,所以只能不考虑平方数的情况,或者视其为特例。

忽视平方数之后,

由于都是整数,所以只有

代入,

已知,

可得,

 

可见只有在的时候才有整数解,若只有分数解。这和,

中的大于1时仍然为整数要求同时为整数相矛盾。所以只有一种情况,就是,此时这个偶数就是2,这就退化到

的分支。所以综合来说,除非这个偶数是2,否则,若一个偶数能写成,

的形式,则其中所对应的周期就无法任意选取。因为把这三个周期投射在相互正交的三个方向上,并对其任意变动,无法生产所有的。也就是说这种做法对某些偶数成立,比如为平方数的情况,但对于大多数偶数都不成立。所以三个分支之中,大多数偶数都不能写成这种形式,所以假定一个偶数只能写成这种形式而不能写成质数之和的形式,是不成立的。两个质数之和总是可以写成,而质数和两个质数之积之和大多数时候无法写成,才是实际的情况。

根据陈氏定理,即便它不能写成质数和质数之积,它仍然还可以写成两个质数之和,也就是

的形式,必须总是成立的。

现在,让我们看看为什么一定可以写成质数之和的形式。

仍然把质数换成虚数单位,

用虚数单位以利于区分维数(不需要也不应该用i2,因为只有两个自变量,函数值完全决定于两个无关的自变量的值,所以用1和这两个单位即可,事实上可以认为1=),已知,

令,

只要,

选择适合的以及符合上述关系,就可以生成任意自然数

总结一下,两个分支,

的区别在于,前者可以依照的无关性构造所有的,后者依照的无关性只能构造部分,也就是说任意不可能都是由构造的,那些无法构造的,就只能是构造的,而且也确实可以把构造出来。

这里没有提及的是,为什么必须是质数:如果是合数就可以分解成若干质数,比如说,

这种情况正是,

退化为,

的情况,所以或者回归到质数,或者只能是2,所以必须是质数加上1的形式,其它合数之积加上1的做法都是走不通的。

解释:最开始讨论的关于计数系统重复的部分体现在了哪里?

体现在了上。虽然说周期只有,但是计数系统不可能只计数一次,所以是必然的。若只得到无论如何都只能等于1,那么这不是一个有效的计数系统,它计数的结果是不稳定的,或者说,随机的或者只发生一次的。

这个题目的本质在于我们没有把计数系统本身考虑在内,就像是经典力学假定了观察者可以独立于现象之外一样,这显然是不对的,观察者必须被考虑在其中不然现象根本没法出现。同理计数系统的计数能力和保证这个能力的条件必须满足,不然结果就是不确定的。我们假定了计数过程可以无限延续而没有周期性,但是没有周期性就没法确定某个数的存在,所以即便周期超级大,它也必须有周期性,这个周期性可以超越观察者的观察能力,但不能超越自身的基本规律。换句话说,就算是我们永远也数不到那个最大的自然数,它还得存在,不然别的自然数也没法存在了(第一个周期完成之后才能开始下一个周期,第一个周期中每个数的存在性才能被验证是存在过的)。所以只要数数,就一定有周期性,即便永远不能达到,周期性的存在性毋庸置疑,这是我们使用自然数的最基本的条件。有了周期性,我们就可以避免使用负数或者虚数形式的虚数单位,而转而使用周期差值形式的虚数单位。这就把无限域中发生的计数过程,重新映射到有限域中发生的计数过程。这就把有限域中的无关变量用虚数单位联系起来,以利于导出它们共同作用的效果。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值