这里的1+1即所谓的哥德巴赫猜想,其形式为,
现在让我们考虑,对于偶数来说,和为的两个奇数,分别称为和,现在让它们相乘,
可以解出,
因为,
所以,
若要方程有解,显然需要判别式,
另外还有,如果要求结果为整数,根号下必须为整数的平方,
这也是必须成立的,此时,
由于是的中点,可见和正好是在上的正负偏移之后的点的位置。
上式只能说明两个数是存在的,但不能说明它们是质数还是合数。现在让我们考虑这个事情的本质:对于周期,在其上实现左右偏移的结果的乘积为,
而用两个数和周期也可以描述这种关系,
可见这两种形式具有某种等价性。因为是两项乘积,我们用比例常数,将两者关联起来,
统一左右的形式,
不难看出,
可以解出,
可得,
如果,
是两个质数的乘积,则
也是两个质数的乘积,由于和像是和一样环绕在两侧,则实际上只需要一个质数或者,而不需要两个质数乘积,因为在这种关系中多余的倍数会被约去。所以只需要或者只需要,而将映射回去,就可以得到,
其中和都是质数,这是对于任何都成立的。
总结一下,任何一个整数都可以是一个有效周期。若观察者的观察能力小于一个周期,则周期完成即周期开始,所以周期对于这个观察者来说总是等于0,但对于观察能力大于一个周期的观察者来说则不成立。
一个周期存在,就总能在周期中找到一个长度,和它关于周期分点的镜像。比如在周期中找到一个点,它到周期结尾的长度为,那么在 下一个周期开始经历长度之后,就是那个点的镜像,只要保证周期长度即可。
这两个对称的点对应的长度的乘积,对于跨周期的情况来说,就是
而与之相对应的在单个周期之中的情况则是,
两者是同样两个数量乘积的两种表示,对应的就是的位置,对应的就是的位置。对于同一事物的两种表述也可以用来建立它们的关系,这就构成了如下方程,
我们再用具体的数量来解释一下,比如存在周期,
而分点相距周期结尾的长度,
这时候就有,
而另一半则是,
此外还知道,
而13对于周期10来说,可以认为是3或者-7,所以-7其实就是3的相反数。但是-7无法出现在正整数中,它只能以与周期10的末尾求相对距离,也就是
的方式来体现,所以3的相反数在正整数中实际上就是17。
所以即便并不是质数而是合数,它对应的显然也是具有同样质因数的合数,只有正负不同,那么两者相加的结果显然要先约去质数的若干倍数,结果显然只能是两个质数之和(其实只是一个质数的两倍,只是其中一个跨过了周期)。从周期归零的角度,我们可以写出,
而这个就是的周期形式,而如果无论如何p都只能等于合数,是这个合数的相反数,那就相当于这个偶数周期不可能存在,因为它总会被约分到更小的偶数。所以可以知道,任何一个大于2的偶数,它总可以写成两个质数之和(而不必写成一个质数和两个质数之积之和)。
能否更为简明一些,说说哥德巴赫猜想到底要说明什么?
它要说明的是,任何一个周期,都可以视为从0开始,它总可以由正负两个部分配合而成。对于没有负数部分的正整数集合来说,负整数实际上被放在了下一个周期里面,不是说没有,而是说具有特别的形式。构成周期,结果为0的正负两个数,用它们的正数形式相加,就至少需要周期的两倍的空间才能容纳进来。而此时体现的就是这正负两个数完全填满两倍的周期。这两个数本质上互为相反数,所以实际上是同一个数的两种形式。而如果这个数是合数,则它是可约的,进而导致结果也被约去,周期长度变短,所以只有不可约的周期长度,也就是质数周期长度才不会变短。若一个周期长度不得不变短,则这个周期不存在,然而自然数不可能缺少任何一个成员,所以对于那些周期可能变短的,一定还有其它保证其周期不会变短的数量来支持。既然任何一个自然数终究存在,那么任何一个自然数都有至少一个使得其周期不会变短的方式,也就是说,必有一个质数来支撑它,而这个质数和它的相反数之间的距离,要求它们存在于周期两倍的空间之中,且可以完全充满。这就是任何一个充分大的偶数,都可以写成两个质数之和的原因。
仔细分析上面的讨论,我们似乎可以抽象出一个概念,就是正整数(或者自然数)集合中,也存在“负数”的概念,它不是通常意义上的补数,比如10周期中,7就是3的补数。而是说,10周期中,(7+10)=17才是3的“负数”也就是相反数。周期必须扩充到原来的二倍,周期加上补数的绝对值才是原数的相反数。这主要是因为,“负的”本身不可能在当前的周期中,也不能出现在先前的周期中(不然还要出现负周期),只能出现在下一个周期里面,而下一个周期中靠近周期末尾的,从周期末尾倒数,就是所谓的“负的”。可见在这个原则上来看,“负的”实际上要比“正的”还大很多。