首先是虚数单位,
虚数单位的意思是:在一个完全周期中,单位1重复的次数就叫做周期,1当然也是周期,但是叫做单位以区别于它的多次重复,1被这个重复的的次数划分而得到的也是周期,叫做最小周期。周期已经完成,并再继续一个最小周期,就进入了下一个周期的开始,也就是0。
既然虚数单位代表的是单位的个数或者周期,它到底多大已经不重要了,所以它可以特别大,也可以特别小。我们通常认为它特别大(特殊时候认为特别小也没有关系),而且是要多大有多大,这就符合了通常我们对于“一阶无穷大”(如果有这个概念的话)的理解,而它的倒数,则是要多小有多小(但总是略微大于0),这就符合了我们通常对于“一阶无穷小”的理解。所以这个方程也可以被认为是,
一阶无穷大 + 一阶无穷小 = 新周期的开始。
也可以写成,
(这就是csdn博客上的头像)
然后是导数和微分,所谓导数,指的是自变量略微增加一个无穷小的时候,函数的数值变化和自变量的数值变化的比值(函数变化率);如果不考虑比值,只考虑函数值的变化(的主要部分),就叫微分。还是以,
为例,假定的变化量为
当的时候,
就是微分,但是
太小了,可以忽略掉,
此时写成
所以微分就是,
。微分除以此时的自变量变化量
就是导数
。
这是微积分的基本知识。现在,让我们用虚数单位的倒数 来代替
则函数的微分,
同理,就是函数的微分,但是
太小了(高阶无穷小),被认为是0,所以微分就是
,而自变量的变化量就是
,所以导数,
结果显然是一样的。在此我们用虚数单位的倒数代替了无穷小,省去了取极限的麻烦。
这个还不是最重要的,最重要的是当我们知道某个自变量本身就是一个单位的时候,我们就可以直接用它的倒数来表示它的微分,比如
如果我们对时间取偏微分,则只需要,将T换成它的倒数,
因为对于T作为一个周期,它的单位是1,它的最小单位就是。这种运算要比ε-δ的极限方式简单多了;而且实际上,所谓无穷小,就是这么一回事,它不是真的要多小有多小,只是小到够用而已。再比如说,我们把c当作一个整体,那么它的微分,就是它的倒数
。而要表示的是c本身的时候,再取其相反数,
,这就是它回归到虚数单位的形式。
而这种模式本身可以套用到各种单位身上,甚至不是单位,你也可以认为它是单位,但是要处理好和其它单位的关系。
还有就是,正如我们在求导数的时候,总是把高阶无穷小认为就是0,但实际上一阶无穷小,也可以被认为是0,所以经常我们把单位的倒数也就是最小单位近似等于0,这样会让运算简单得多。同理,既然单位的倒数可以等于0,那么它的对等的部分,就可以占据整个周期,这时候这个虚数单位就可以认为等于周期,意思是,对于,
如果,
那么就是周期本身。
这里可能有一个含糊的地方,比如常数1的微分,
这时候应当被认为等于0,而它的导数,
看似应当等于1,但实际上必须等于0,因为微分首先等于0。
不过对这个问题也应有更深层次的考虑,换句话说,它等于1也是对的,
而这时候平行于横轴的直线其实是三角波形的折线拟合的。
有了这些数学基础,可能文章读起来就更容易了。
P.S.
这个用法只是一种发现,我并未在这个发现上做太多深入的研究,目前为了处理物理学上的问题,只是做到了“够用而已”。将其形式化规范化,可能需要别人去完成了。