一些数学上会用到的概念

首先是虚数单位,

x+\frac{1}{x}=0\Rightarrow x=\sqrt{-1}=i

虚数单位的意思是:在一个完全周期中,单位1重复的次数就叫做周期,1当然也是周期,但是叫做单位以区别于它的多次重复,1被这个重复的的次数划分而得到的也是周期,叫做最小周期。周期已经完成,并再继续一个最小周期,就进入了下一个周期的开始,也就是0。

既然虚数单位i代表的是单位的个数或者周期,它到底多大已经不重要了,所以它可以特别大,也可以特别小。我们通常认为它特别大(特殊时候认为特别小也没有关系),而且是要多大有多大,这就符合了通常我们对于“一阶无穷大”(如果有这个概念的话)的理解,而它的倒数,则是要多小有多小(但总是略微大于0),这就符合了我们通常对于“一阶无穷小”的理解。所以这个方程也可以被认为是,

    一阶无穷大 + 一阶无穷小 = 新周期的开始。

也可以写成,

x^{+1}+x^{-1}=0

(这就是csdn博客上的头像)

然后是导数和微分,所谓导数,指的是自变量略微增加一个无穷小的时候,函数的数值变化和自变量的数值变化的比值(函数变化率);如果不考虑比值,只考虑函数值的变化(的主要部分),就叫微分。还是以,

f(x)=x^2

为例,假定x的变化量为\Delta x

f(x+\Delta x)-f(x)=(x+\Delta x)^2-x^2=x^2+2x\Delta x+(\Delta x)^2-x^2=2x\Delta x+(\Delta x)^2

\Delta x\rightarrow 0的时候,2x\Delta x+(\Delta x)^2就是微分,但是(\Delta x)^2太小了,可以忽略掉,\Delta x此时写成dx所以微分就是,2xdx。微分除以此时的自变量变化量dx就是导数2x

这是微积分的基本知识。现在,让我们用虚数单位的倒数\frac{1}{i} 来代替\Delta x\rightarrow 0

\frac{1}{i}=\Delta x\rightarrow 0

则函数的微分,

f(x+\frac{1}{i})-f(x)=(x+\frac{1}{i})^2-x^2=x^2+2x\frac{1}{i}+(\frac{1}{i})^2-x^2=2x\frac{1}{i}+(\frac{1}{i})^2

同理,2x\frac{1}{i}+(\frac{1}{i})^2就是函数的微分,但是(\frac{1}{i})^2太小了(高阶无穷小),被认为是0,所以微分就是2x\frac{1}{i},而自变量的变化量就是\frac{1}{i},所以导数,

\frac{f(x+\frac{1}{i})-f(x)}{\frac{1}{i}}=2x

结果显然是一样的。在此我们用虚数单位的倒数代替了无穷小,省去了取极限的麻烦。

这个还不是最重要的,最重要的是当我们知道某个自变量本身就是一个单位的时候,我们就可以直接用它的倒数来表示它的微分,比如

c=\frac{L}{T}

如果我们对时间取偏微分,则只需要,将T换成它的倒数,

\partial _{T}c=\frac{L}{dT}=\frac{L}{\frac{1}{T}}=LT

因为对于T作为一个周期,它的单位是1,它的最小单位就是\frac{1}{T}。这种运算要比ε-δ的极限方式简单多了;而且实际上,所谓无穷小,就是这么一回事,它不是真的要多小有多小,只是小到够用而已。再比如说,我们把c当作一个整体,那么它的微分,就是它的倒数\frac{1}{c}。而要表示的是c本身的时候,再取其相反数,c=-\frac{1}{c},这就是它回归到虚数单位的形式。

而这种模式本身可以套用到各种单位身上,甚至不是单位,你也可以认为它是单位,但是要处理好和其它单位的关系。

还有就是,正如我们在求导数的时候,总是把高阶无穷小认为就是0,但实际上一阶无穷小,也可以被认为是0,所以经常我们把单位的倒数也就是最小单位近似等于0,这样会让运算简单得多。同理,既然单位的倒数可以等于0,那么它的对等的部分,就可以占据整个周期,这时候这个虚数单位就可以认为等于周期,意思是,对于,

x+\frac{1}{x}=0

如果,

\frac{1}{x}=0

那么x就是周期本身。

这里可能有一个含糊的地方,比如常数1的微分,

1+\frac{1}{i}-1=\frac{1}{i}

这时候\frac{1}{i}应当被认为等于0,而它的导数,

\frac{1+\frac{1}{i}-1}{\frac{1}{i}}=\frac{\frac{1}{i}}{\frac{1}{i}}

看似应当等于1,但实际上必须等于0,因为微分首先等于0。

不过对这个问题也应有更深层次的考虑,换句话说,它等于1也是对的,

而这时候平行于横轴的直线其实是三角波形的折线拟合的。

有了这些数学基础,可能文章读起来就更容易了。

P.S.

这个用法只是一种发现,我并未在这个发现上做太多深入的研究,目前为了处理物理学上的问题,只是做到了“够用而已”。将其形式化规范化,可能需要别人去完成了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

铸人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值