为什么有“负负得正”

今天我儿子给我说了一个事,如果能“发射霉运”,在这个“霉运”上面再发射一个“霉运”,不就可以“负负得正”,得到好运了吗?

我问他,要是这事对于“运气”不成立怎么办?要是变成“两倍霉运”或者“霉运的平方”怎么办?

他说,不算加法,算乘法,”霉运的平方”也是负负得正啊。

我不知道怎么回答,因为我们讨论的是“霉运”,而不是“负数”。我讨论不了“霉运”只能讨论“负数”,至于两种的关系,目前不清楚。但讨论“负数”这个我办得了,下面就具体说说。

难道“负负得正”不是“规定如此”吗?

那么为什么要这么规定呢?听我如实道来。

负负得正,两个负数的乘积是一个正数,我们就用最基本的例子,就是-1,两个-1相乘,为啥得+1。

好吧,现在我们说一个数比如12,相对于12的-1,就是12-1=11,考虑模运算,

11 mod 12 = -1 (mod 12)

这个表达式说的就是11相对于12等于-1,

现在用11乘以11,看等于多少,

11 * 11 = 121

121 模12 (就是除以12,然后取余数),就等于1,写成数学表达式,

11*11 = 10 * 12 + 1 = 1 (mod 12)

再换一个数,比如28为模数,27就是相对于 28的-1,

27*27=729 = 26*28 + 1 = 1 (mod 28)

显然也是对的,然后你再换别的数,也应该是对的。

我们抽象一下,把模数12或者28 这个具体的数,用代数的方法写成n,那么-1就是n-1,于是

(n-1)*(n-1)=n*n-n-n (?) 1= n^2 - 2n (?) 1

那个括号里面的问号,显然只能填写“+”或者“-”,不可能填写别的,那么你填写什么?

还是按照模运算,n的平方被n自己模掉得0,因为n的平方是n的整数倍,除以n之后余数为0,2n也被n自己模掉得0,原理相同,就剩下(?)1,

(n-1)*(n-1)=n*n-n-n (?) 1= n^2 - 2n (?) 1=0 - 0 (?) 1 (mod n)

根据上面计算的经验,“?" 就只能是"+",不可能是“-”。

所以把n-1当成n+(-1)的时候,(-1)和(-1)的乘积,最后的符号(?)就是“+”,也就是说,

-1乘以-1等于+1。

从头到尾我们讨论的都是有限域里面的模运算,而给出一个-1,显然是没有说出域的大小的,

但是我们也知道,给了一系列的数值当作域的大小,我们都能得到相同的结果,就是那个(?)

必须是“+”,不可能是“-”,所以我们把定义域扩展到无限域,也就是不管域有多大多小,认为都符合这个原则。正整数域是特定数值的扩展,整数域是正整数的扩展,实数域是整数域的扩展,复数域是实数域的扩展,反正我们认为,不管怎么扩展,都符合这个原则。这就是“负负得正”的由来。

那么,有没有可能“负负得负”呢?

考虑-1的平方根,也就是虚数单位i,既然知道-1指的是某个不确定域里面倒着数的第1个,那么它的平方根其实也是倒着数的,比如-1=625 那么周期就是626,-1的平方根就是625的平方根,就是25,相对于626来说就是-601,而25的平方根,就是5,相对于626来说,就是-621。

在626周期的前提下,-1的平方根的平方根,就是-621,它的平方,就是-601。这就是“负负得负”的例子。显然-601还是比-621大的,因为对于负数来说,绝对值大的数值反而更小。

现在说的是有限域,而扩展到无限域,那就是

\sqrt{i} \times \sqrt{i} = i <0

可见,“负负得负”也是存在的,就看你说的到底是什么前提下的什么事。

回到“发射霉运”,以及“叠加霉运”,或者说,到底能不能“负负得正”,那就得看这个负数到底有没有达到比虚数单位更负的程度,而这决定于周期的大小和这个负数的绝对值之间的相对关系。负数的绝对值小于周期的平方根的仍然是“负负得负”,等于周期的平方根的,就是周期本身,大于周期的平方根的,就是负负得正。而一般来说周期大小未知的情况下,无法判断,只能先探求周期,然后再做判断。这一点和判断一个数是否是质数,要用它的平方根之下的数来验证(IsPrime函数),有着异曲同工之妙。

所以,还是避免“发射霉运”,尤其是避免“追加霉运”,不然可能真的会“万劫不复”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

铸人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值