E-M 可以被认为是彼此缠绕的曲线,就像两条互相缠绕的蛇。无论是在 3D 时空还是在函数图像上都是如此。现在,让我们考虑 E 线在 3D 时空中的实际样子。给出平行板电容器
平行板电容器,之所以叫做平行板电容器,不只是因为两个极板平行,还因为两个极板的正对面积(几乎)相等,所以严格来说叫做对称平行板电容器,用以区别非对称平行板电容器,也就是两个极板面积不等甚至相差甚远的平行板电容器。
假定图中的上极板带有大量的正电荷,下极板带有大量的负电荷。我们知道所谓正负电荷,就是单位时间频率变化如下图的两种振动,
正电荷频率从高到低降到负电荷频率从低到高的同样一个位置。极板的情况如此。那么极板中间的情况呢?极板中间毕竟是有电场强度E的,也就是说,如果我们知道了极板之间的“虚电荷”的频率变化情况,就自然能够推导出到底E是什么的正确理解。我们可以把频率图的频率轴和平行板上下极板的中心轴对齐在一起,同时标注其为长度轴,那么就不难看到如下的图像,
最上面的是正电荷的(单周期)频率(随时间)变化曲线,最下面的是负电荷的频率变化曲线。为了保持频率变化的连续性,中间的就是那些“虚电荷“,也就是其它非标准模式的电性振动(各种典型振动都具有相同的周期,也就是在横轴上的宽度)的频率变化曲线。其中最中间的那一条曲线,频率完全不随着时间变化,可以认为它是电中性的。然后,让我们把这些曲线,也就是这些采样点的上下左右的范围画出来,用框图表示,
可见这些框图的高度从两边到中间逐渐减小,也就是说频率变化或者周期变化的的绝对值从两边到中间逐渐减小。到最中间的时候,频率在整个过程中没有发生变化。频率便于我们理解能量的强度,而时间则可以当作最终计算的统一单位,所以我们不用频率而是用周期。每个框图就是那个点上的周期变化过程,而相邻的框图就代表平行板电容器轴向上的相邻两个“虚电荷“,那么我们就可以写出关于场强的表达式,
由于d和时间(也即是频率)是同一个函数图像上的同一个轴,所以距离d也可以被理解为时间的差异,由此,
若将那个高度为 0 的框图当作 0 点,上面是正下面是负,不难看出就算是下面,也是负的小绝对值减去负的大绝对值,也就是说,结果还是正的。也就是说,这个方程对于整个图像中的所有相邻框图都是成立的。而且我们看到所有的正周期都可以提到一起,所有的负周期也可以提到一起,也就是说都当作两个极板上的电荷的正负周期,所以实际上我们也得到了关于电势和电势差的表达式,
还有长度的表达式,