1. 代数拓扑 (Algebraic Topology)
代数拓扑用于研究文本、语义网络、文化数据中的高阶结构和形状特征。它通过将数据嵌入拓扑空间,计算其同调群(如连通性、洞、空腔等)来揭示数据的隐藏模式。
数学背景
代数拓扑的核心公式是:
:n维同调群。
:边界算子,描述n维单纯形如何被其边界构成。
持续同调(Persistent Homology)是代数拓扑的一个分支,用于在不同尺度下捕捉数据的拓扑特征。
应用场景
- 文本网络分析:分析文本中词语的关联网络,识别高阶关系。
- 文化数据的形状分析:探索历史事件或文化数据的复杂拓扑结构。
代码实现
import numpy as np
from ripser import ripser
from persim import plot_diagrams
import matplotlib.pyplot as plt
# 示例:生成随机点云数据
np.random.seed(0)
point_cloud = np.random.random((100, 2)) # 100个二维点
# 计算持续同调
diagrams = ripser(point_cloud)['dgms']
# 绘制持续同调的条形图
plot_diagrams(diagrams)
plt.title("Persistent Homology of Point Cloud")
plt.show()