eCognition最邻近方法分类

最邻近分类,是eCognition里比较简单的分类方法。前面已经说过的步骤不再详述,大体就是在分类之前要选择合适的尺度进行分割,创建类别。还需要的是对每一个类别选择需要训练的样本,选择Samples里的Select Samples,左键点击类别树里的类别,然后双击选择分割后的分割区,选择多个分割区作为分类样本,依次对各个类别选择样本。

最邻近分类我应用到的就是Nearest Neighbor三部曲:

1. 首先挑选分类需要的规则,是根据光谱特性,纹理特征或形状特点等特征规则进行分类,所以选择适用于图像的合适的规则是很有必要的,所以首先选择的是Feature Space Optimization,左框选择需要进行分类的类别,右框选择要素,设置该分类的图层,所需的要素个数的最大值。点击计算,稍等以后在左下区会有最优分类要素的可分离距离,及最优的分类要素的个数,点击Advanced可以看到各种个数的要素所对应的要素和可分离距离。记下最优用于分类的几种要素。

2. 点击Edit Standard NN Feature Space 选择刚刚的几种要素。

3. 点击Apply Standard NN To Classes 左框中选择要应用的类别(应该和1中的类别选择相同),把这些分类要素应用于这些类别。

以上做完了以后,右键点击所应用的类别,选择Edit会看到刚选择的要素显示在该类别的Contained中。

后续是要进行分类,在过程树中添加Classification过程,设置Active classes中需要分类的类别(和1.2中保持相同)点击运行则输出运行结果。

导出分类结果,是使用export classification view导出分类结果图,设置各种参数可以参考帮助文档。


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值