opencv最小二乘法拟合平面

  1. //Ax+by+cz=D  
  2. void cvFitPlane(const CvMat* points, float* plane){  
  3.     // Estimate geometric centroid.  
  4.     int nrows = points->rows;  
  5.     int ncols = points->cols;  
  6.     int type = points->type;  
  7.     CvMat* centroid = cvCreateMat(1, ncols, type);  
  8.     cvSet(centroid, cvScalar(0));  
  9.     for (int c = 0; c<ncols; c++){  
  10.         for (int r = 0; r < nrows; r++)  
  11.         {  
  12.             centroid->data.fl[c] += points->data.fl[ncols*r + c];  
  13.         }  
  14.         centroid->data.fl[c] /= nrows;  
  15.     }  
  16.     // Subtract geometric centroid from each point.  
  17.     CvMat* points2 = cvCreateMat(nrows, ncols, type);  
  18.     for (int r = 0; r<nrows; r++)  
  19.         for (int c = 0; c<ncols; c++)  
  20.             points2->data.fl[ncols*r + c] = points->data.fl[ncols*r + c] - centroid->data.fl[c];  
  21.     // Evaluate SVD of covariance matrix.  
  22.     CvMat* A = cvCreateMat(ncols, ncols, type);  
  23.     CvMat* W = cvCreateMat(ncols, ncols, type);  
  24.     CvMat* V = cvCreateMat(ncols, ncols, type);  
  25.     cvGEMM(points2, points, 1, NULL, 0, A, CV_GEMM_A_T);  
  26.     cvSVD(A, W, NULL, V, CV_SVD_V_T);  
  27.     // Assign plane coefficients by singular vector corresponding to smallest singular value.  
  28.     plane[ncols] = 0;  
  29.     for (int c = 0; c<ncols; c++){  
  30.         plane[c] = V->data.fl[ncols*(ncols - 1) + c];  
  31.         plane[ncols] += plane[c] * centroid->data.fl[c];  
  32.     }  
  33.     // Release allocated resources.  
  34.     cvReleaseMat(¢roid);  
  35.     cvReleaseMat(&points2);  
  36.     cvReleaseMat(&A);  
  37.     cvReleaseMat(&W);  
  38.     cvReleaseMat(&V);  
  39. }  

调用的方式:

[cpp]  view plain  copy
 print ?
  1. CvMat*points_mat = cvCreateMat(X_vector.size(), 3, CV_32FC1);//定义用来存储需要拟合点的矩阵   
  2.         for (int i=0;i < X_vector.size(); ++i)  
  3.         {  
  4.             points_mat->data.fl[i*3+0] = X_vector[i];//矩阵的值进行初始化   X的坐标值  
  5.             points_mat->data.fl[i * 3 + 1] = Y_vector[i];//  Y的坐标值  
  6.             points_mat->data.fl[i * 3 + 2] = Z_vector[i];<span style="font-family: Arial, Helvetica, sans-serif;">//  Z的坐标值</span>  
  7.   
  8.         }  
  9.         float plane12[4] = { 0 };//定义用来储存平面参数的数组   
  10.         cvFitPlane(points_mat, plane12);//调用方程   
我们拟合出来的方程:Ax+By+Cz=D

其中 A=plane12[0],    B=plane12[1],   C=plane12[2],   D=plane12[3],

这是要注意的方程的表示

### OpenCV 中使用最小二乘法进行平面拟合 为了在OpenCV中实现最小二乘法进行平面拟合,可以按照以下方式操作: #### 准备工作 首先需要准备一组三维点数据用于拟合。这些点通常表示为`std::vector<cv::Point3f>`的形式。 ```cpp #include <opencv2/opencv.hpp> #include <iostream> // 假设已有一组三维点 dataPoints 存储在一个 std::vector<Point3f> 变量里 std::vector<cv::Point3f> dataPoints; ``` #### 构建设计矩阵 构建一个设计矩阵来表达线性方程组 \( Ax=0 \),其中A是由输入点构成的设计矩阵,x代表待求解的参数向量(即平面方程中的\( A,B,C,D \))。对于每一个给定的空间点\((X_i,Y_i,Z_i)\),对应的行将是\[ X_i , Y_i , Z_i , 1 \][^1]。 ```cpp cv::Mat designMatrix(dataPoints.size(), 4, CV_32F); for (size_t i = 0; i < dataPoints.size(); ++i){ designMatrix.at<float>(i, 0) = dataPoints[i].x; designMatrix.at<float>(i, 1) = dataPoints[i].y; designMatrix.at<float>(i, 2) = dataPoints[i].z; designMatrix.at<float>(i, 3) = 1.0f; } ``` #### 计算SVD分解并获取最优解 通过奇异值分解(Singular Value Decomposition,SVD)找到使得误差平方和最小化的解。这可以通过调用OpenCV提供的函数完成: ```cpp cv::SVDecomp(designMatrix, cv::noArray(), cv::noArray(), _solutionVector, cv::SVD::MODIFY_A | cv::SVD::FULL_UV); // 获取最后一列作为解决方案,因为这是对应于最小奇异值的那一部分 cv::Vec4f solution(_solutionVector.row(3)); float A = solution[0]; float B = solution[1]; float C = solution[2]; float D = solution[3]; std::cout << "Plane equation is: " << A << "*x + " << B << "*y + " << C << "*z + " << D << "=0\n"; ``` 上述过程实现了从一系列空间点出发利用最小二乘法寻找最佳匹配平面的过程[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值