不要欺负她,这是你媳妇

  初次遇到的那年,你妈妈拉着我的手,告诉你“不要欺负她,这是你媳妇”,然后你拉着我的手说“我不欺负她,这是我媳妇”,以至于后来的很多年,大家都拿这个开玩笑。然后那个霸道、调皮捣蛋的你,就真的没有欺负我,把你的玩具也只给我玩。你会恶作剧的往别人家扔鞭炮,然后跑的时候一定会拉着我。

  那年我6岁,你9岁。

  chapter 2

  后来呢!我们都慢慢大了,也很少会遇到,但是会一直听到你爸妈说你的种种事迹

  后来,你去了潍坊上学,而我青岛上学。

  那年我13岁,你16岁。

  再后来呢!我去了济南上学,你去了北京当兵。

  那年我16岁,你19岁。

  我们的生活没有了交集。

  chapter 3

  时隔多年的第一遇见是我去北京签证出国,而你在北京当兵,正好在使馆那里,于是你爸给你打电话说“你媳妇要去了”,你说“那个媳妇?”

  你看你都已经把我忘记了,而我一直记得你!

  那天我早早的就进了使馆,而你就早早的请了假,去了使馆等我,可惜的是我在里面呆了很久,而你的时间也有限,所以当我兴高采烈的出来的时候,看到的是你离开的背影。

  我们也就突然熟络起来了,频繁的短信和电话,而你也总会惹得我开怀大笑。

  你说我离开的那一天,一定会去机场送我,于是你早早的请假了,可是我离开的那天,你突然接到任务,不能出来了,而我就这样离开了。

  chapter 4

  当我在异国落地,一上QQ就看到你的留言,虽然我们隔离很远,还是在一直频繁不断联系,我会告诉你我的开心的不开心,然后我们开始拌嘴,每次我心情不好的时候和你拌嘴赢了,都会特别的开心,每次当我给你跨洋打电话的时候你,你都到处躲躲藏藏的怕领导看到,可还是被没收了3个手机,可是哪怕所有人都联系不到你的时候,你还是不会了断了和我的联系,也只和我联系,在我失恋最难过和异国最难过的时间里,是你一直陪着我。

  chapter 5

  在我出国的第二年,你就转业回了青岛,可是我们之间的联系不知道为什么慢慢的有点淡了,可是在我需要你的时候你还是会出现。

  我说我回去之后想到处旅游,去苏杭,去云南,你说无论我去哪你都会陪我去,我们一起。

  我说我回去要好好的给自己补补,你说我下飞机那天一定回去接我,然后带我去吃所有我想吃的,我笑着跟你说,如果你反悔不请我吃,那我就赖人家门口不走了。

  我们回忆着以前,说着以后。你说的永远的,虽然我不知道永远到底是多远。

  可是你的话我记得了,也信了。

  你知道的自从离开他以后,就一直满怀戒心,你是第一个让我这么相信的。

  chapter 6

  出国的第三年,你问我“丫头,你真的没找男朋友么?”

  我说“我要是有男朋友还会有时间天天跟你闲扯?”

  你说“要不就我吧!”

  其实你的心意我早就知道,只是一直在害怕,可是这次我想,我离开他5年了,你陪了我3年了,我是该走出来了,我说“等我回去的时候你还是单身,我们就谈谈”。其实我还是在害怕,怕你等不及我回去,可是后来我们不知道怎么了,就那样顺利成章的在一起了。

  那天,是你的生日,我在电台录了特意为你录了一个节目,发给你。我知道我们隔得太遥远,我能做的只有这么多,可是你高兴地像个孩子似的跟我说,这是你收到的最好的生日礼物!

  几天后的我飞往纽约,早上刚醒来就看到有人加我QQ好几次,是个女的。

  她说我们的聊天很精彩,那一瞬间天旋地转,我问你,你说是你前女友上了你的QQ,你忘记改密码了。你说你会把密码改掉的让我放心,我说好,只要你说我就信。

  那天晚上在纽约和朋友聚会,我喝了很多伏特加,跟不要命似的喝,那是我这三年来第一这么失控,这三年来无论我遇到什么我都没有这么失控过,我哭着给你打电话,说我想你了,我想家了,我想回去了,我很难过……

  还有什么我就不记得了,只记得自己反反复复的说着这句话,那时候我就知道你在骗我,可是我不敢相信,也不敢往下想,所以你也一直以为我只是想家了。

  chapter 7

  2014年的新年,你爸爸妈妈去我家,说准备让你今年结婚,我姐就越洋给我打了电话,问我什么情况?姐姐是知道我们的事的,那一刻我哑口无言,我多想打电话质问你,可是我真的不敢,我给你留了言就删了你Qq和微信,不敢听解释,也一直在等你解释,可是我最终等来的是你爸妈通知我家里人你结婚的日期,就在我生日的前一天,你看,你生日我送了你一份惊喜,在我生日的时候你也送了我一份惊喜,你的”婚期”!那一刻,我觉得我的心痛的连呼吸都在颤抖,那一刻,我以为我要窒息了,我大口的喘息着,那一刻,我想哭可是哭不出来,那一刻我瞬间浑身冰冷,让我在这个二十多度的季节冷的发抖!

  我进了你的空间,看见在我们分开的那天你写到“1314,原来是一散一世”,我痛的直不起腰,原来你还记得那个日子,还记得我说的话,可是最后结果却是一散一世。

  chapter 8

  你不知道的是,你爸妈通知我家里人的你的婚期的时候,我正好打回去了电话,你妈妈问了我生活怎么样,问我还好么,问我什么时候回去,可是当我颤抖着说“阿姨,哥哥要结婚了么?”你妈妈说孩子,你要勇敢,跟你妈妈说话吧!那一刻,我不知道自己什么感觉了,那种悲伤说不出来!

  你妈妈说你们家里人都不喜欢那个姑娘,你爸爸都不管你的婚礼。

  你妈妈说从小就看好我的,原以为我们能在一起的。

  你妈妈说怎么也没想到你会带个姑娘回家

  你妈妈说她记得找不到我时候你有多着急

  你妈妈跟我妈妈说了好多。

  可是这些都不重要了,重要的是你喜欢她,为她穿上了婚纱,你将和她牵手一生。

  我不敢再联系你,其实我真的很想听你说话,可是我真的不想让你看到我这么狼狈,这是我最后能为自己做的。

  chapter 9

  你要结婚了,可是新娘却不是我! 多么悲哀的结局!

  以前一直以为命运让我们错过是不想让我们太早相遇,是为了让我们能一起终老!

  可是知道现在我才知道,是我们真的没有缘分,所以才会一直错过。只是开始的我不懂得这个道理!

http://t.163.com/event/info/eventId/-4092886011646089041
http://t.163.com/event/info/eventId/3825605375934742048
http://t.163.com/event/info/eventId/-6702523490343102497
http://www.huihui.cn/share/35490122
http://www.huihui.cn/share/35500156
http://www.huihui.cn/share/35503552
http://www.huihui.cn/share/35511752
http://www.huihui.cn/share/35515930
http://www.huihui.cn/share/35520618
http://www.huihui.cn/share/35521800
http://www.huihui.cn/share/35523654
http://www.huihui.cn/share/35532070
http://www.huihui.cn/share/35535300
http://www.huihui.cn/share/35536876
http://www.huihui.cn/share/35539608
http://www.huihui.cn/share/35543622
http://www.huihui.cn/share/35546514
http://www.huihui.cn/share/35547712
http://www.huihui.cn/share/35548638
http://www.huihui.cn/share/35549370
http://www.huihui.cn/share/35550054
http://www.huihui.cn/share/35550776
http://www.huihui.cn/share/35553626
http://www.huihui.cn/share/35554564
http://www.huihui.cn/share/35555690
http://www.huihui.cn/share/35557440
http://www.huihui.cn/share/35558220
http://www.huihui.cn/share/35558988
http://www.huihui.cn/share/35559716
http://www.huihui.cn/share/35560708
http://www.huihui.cn/share/35561364
http://www.huihui.cn/share/35562234
http://www.huihui.cn/share/35563024
http://www.huihui.cn/share/35563678
http://www.huihui.cn/share/35564448
http://www.huihui.cn/share/35565494
http://www.huihui.cn/share/35566136
http://www.huihui.cn/share/35566872
http://www.huihui.cn/share/35567472
http://www.huihui.cn/share/35568124
http://www.huihui.cn/share/35568806
http://www.huihui.cn/share/35570278
http://www.huihui.cn/share/35570898
http://www.huihui.cn/share/35571514
http://www.huihui.cn/share/35572136
http://www.huihui.cn/share/35573052
http://www.huihui.cn/share/35573764
http://www.huihui.cn/share/35574408
http://www.huihui.cn/share/35574976
http://www.huihui.cn/share/35575694

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值