GDBT-回归预测篇

在上一篇文章gdbt梯度提升原理,详细介绍了梯度、方向导数、为什么负梯度方向是函数下降最快方向,继而引出了GDBT的模型与优化原理。本篇将进一步以实例的方式演绎GDBT是如何进行回归预测的。
上篇推导出的优化模型如下:

fm(x,y,z)=fm1(x,y,z)+learnrate(Lfm1) f m ( x , y , z ) = f m − 1 ( x , y , z ) + l e a r n r a t e ∗ ( ⅁ L f m − 1 )

损失函数L取平方差函数:
L=12(yyhat)2 L = 1 2 ( y − y h a t ) 2

也就是:
L=12(yfm1)2 L = 1 2 ( y − f m − 1 ) 2

求偏导数可得:
Lfm1=yfm1 ⅁ L f m − 1 = y − f m − 1

取learn_rate=1,则优化模型为基于残差的模型:
fm(x,y,z)=fm1(x,y,z)+(yfm1) f m ( x , y , z ) = f m − 1 ( x , y , z ) + ( y − f m − 1 )

实战案例

案例主要来自李航老师的《统计机器学习》
首先是一组样本数据,安装上面的优化模型建模,训练参数
这里写图片描述

cart树构造

基础模型都将依据cart树模型,首先寻找构造cart树的切分点
这里写图片描述
根据考虑的切分点,计算模型误差,寻找误差最小的切分点
这里写图片描述
很显然6.5为最小的切分点,则选择6.5为切分点,构造好树之后,计算残差表,为提升树做准备
这里写图片描述
计算好残差表之后,根据优化模型

fm(x,y,z)=fm1(x,y,z)+(yfm1) f m ( x , y , z ) = f m − 1 ( x , y , z ) + ( y − f m − 1 )

做第一轮迭代,得到一个梯度提升树f1,循环迭代直到,预测结果达到我们心中效果即可停止迭代。

cart树构造方式

cart树不仅可以用做回归,也可以用做分类,分类指标为基尼指数,回归可以使用平方误差。上面例子模型结果会输出一个值,所以上面GDBT的构造方式,主要用来做回归分析,如果涉及到分类则需要修改构造方式。下一篇将会对cart分类树做详细介绍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值