机器学习
文章平均质量分 66
__鸿
这个作者很懒,什么都没留下…
展开
-
贝叶斯公式的共轭分布
共轭分布是一种极大简化贝叶斯分析的方法。其作用是有两个:1.简化贝叶斯公式中概率函数的计算;2.在贝叶斯公式包含多种概率分布的情况下,使这些分布的未知参数在试验前被赋予的物理意义,延续到试验后,便于分析。第二个作用尤为重要。原创 2014-10-06 08:13:18 · 5746 阅读 · 0 评论 -
最大似然估计(Maximum likelihood estimation)
最大似然估计是一种非常有效的参数估计的数学方法,常用于在主题建模等领域。其思想是,对于已知的样本,假设它服从某种模型,估计模型中未知的参数,使该模型出现这些样本的概率最大。原创 2014-10-05 12:08:09 · 3601 阅读 · 0 评论 -
模式识别与机器学习(一):概率论、决策论、信息论
本系列是经典书籍《Pattern Recognition and Machine Learning》的读书笔记,正在研读中,欢迎交流讨论。原创 2016-02-27 21:52:49 · 5135 阅读 · 0 评论 -
模式识别与机器学习(二):常用的概率分布(共轭分布等)
本系列是经典书籍《Pattern Recognition and Machine Learning》的读书笔记,正在研读中,欢迎交流讨论。原创 2016-03-10 21:07:37 · 23796 阅读 · 7 评论 -
softmax的log似然代价函数(公式求导)
在人工神经网络(ANN)中,softmax通常被用作输出层的激活函数。这不仅是因为它的效果好,而且因为它使得ANN的输出值更易于理解。同时,它配合log似然代价函数,其训练效果也要比采用二次代价函数的方式好。原创 2016-04-02 21:59:01 · 69592 阅读 · 13 评论 -
交叉熵代价函数(作用及公式推导)
交叉熵代价函数(Cross-entropy cost function)是用来衡量人工神经网络(ANN)的输出值与实际值的一种方式。与二次代价函数(Quadratic cost function)相比,它能更有效地配合反向传播算法,促进ANN的训练。原创 2016-04-02 18:22:52 · 127136 阅读 · 43 评论 -
反向传播算法(过程及公式推导)
反向传播算法(Backpropagation)是目前用来训练人工神经网络(Artificial Neural Network,ANN)的最常用且最有效的算法。原创 2016-04-01 21:19:56 · 204720 阅读 · 62 评论