SIGIR的一篇推荐算法论文中提到用NDCG和AUC作为比较效果的指标,之前没了解过这两个指标,便查找相关概念,整理如下。
一、NDCG
1.DCG
首先,介绍一下DCG。DCG的全称是Discounted Cumulative Gain,它是衡量搜索引擎算法的一个指标。搜索引擎一般采用PI(per item)的方式进行评测,即逐条对搜索结果进行等级的打分。比如在Google搜索到一个词,得到5个结果。我们对这些结果进行3个等级的区分:Good、Fair、Bad,对应的分值分别是3、2、1。假设这5个结果的分值分别是3、1、2、3、2。
使用DCG这个统计方法有两个前提:
(1) 在搜索页面中,相关度越高的结果排在前面越好。
(2) 在PI标注时,等级高的结果比等级低的结果好。
在一个搜索结果的list里面,假设有两个结果的评级都是Good,但是第一个排在第一位,第二个排在第40位,虽然等级是一样的,但排在40位的那个结果被用户看到的概率比较小,对整个页面的贡献也要比第一个结果小很多。所以第二个结果的得分应该有所减少。DCG的计算公式如下:
其中,