SPH(光滑粒子流体动力学)算法是现今运用最广泛的流体模拟算法。该算法的主要思想是通过模拟流体中每一个微元的受力情况以及其运动规律,来对流体进行模拟。
流体微元所受合力是重力、压力等。重力自然无须赘述。流体所受其他力来源于周围的微元对它的影响。
假设被作用的那个羽毛叫F,所有影响那个羽毛分别为F0 F1 F2...FN。那么羽毛Fj对羽毛F的A属性的影响是这么计算的:
F.Aj=Fj.A*Fj.M/Fj.Ro*W(dist,range)
其中M属性为质量,Ro属性为密度,dist为两个羽毛之间的距离,range为影响范围的半径,W函数为光滑核函数。光滑核函数的意义在于它可以描述一个粒子对周围的影响和它与周围粒子的距离的关系。
同时,应该注意,光滑核函数并不
SPH算法初探(一)
最新推荐文章于 2019-10-17 16:41:31 发布
