文件中字的统计及创建字典

在NLP中,很多都要对字或者单词进行预处理,或者是要创建词典;

例如:tf1: nn实现评论分类

例如:15. tf13: 简单聊天机器人

上面两篇都是对单词的操作,下面提供一份python3下对汉字的操作;

代码中有注释:

import sys

fr = open('xyj.txt', 'r', encoding='UTF-8')

characters = []
stat = {}

for line in fr:
    # 去掉每一行两边的空白
    line = line.strip()

    # 如果为空行则跳过该轮循环
    if len(line) == 0:
        continue

    # 将文本转为unicode,便于处理汉字
    line = str(line)
    # print (line)

    # 遍历该行的每一个字
    for x in range(len(line)):
        # 去掉标点符号和空白符
        if line[x] in [' ', '\t', '\n', '。', ',', '(', ')', '(', ')', ':', '□', '?', '!', '《', '》', '、', ';', '“', '”', '……']:
            continue

        # 尚未记录在characters中
        if not line[x] in characters:
            characters.append(line[x])

        # 尚未记录在stat中
        if not line[x] in stat:
            stat[line[x]] = 0
        # 汉字出现次数加1
        stat[line[x]] += 1

print (len(characters))
print (len(stat))

def dict2list(dic:dict):
    ''' 将字典转化为列表 '''
    keys = dic.keys()
    vals = dic.values()
    lst = [(key, val) for key, val in zip(keys, vals)]
    return lst
# lambda生成一个临时函数
# d表示字典的每一对键值对,d[0]为key,d[1]为value
# reverse为True表示降序排序
stat = sorted(dict2list(stat), key=lambda d:d[1], reverse=True)

fw = open('result.csv', 'w', encoding='UTF-8')
for item in stat:
    # 进行字符串拼接之前,需要将int转为str
    # 字典的遍历方式: fw.write(item + ',' + str(state[item]) + '\n')
    # 排完序后是列表
    fw.write(item[0] + ',' + str(item[1]) + '\n')

fr.close()
fw.close()

print ("success!")


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MachineLP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值