spark杂记:movie recommendation using ALS

24 篇文章 89 订阅 ¥39.90 ¥99.00
本文是关于使用Spark的ALS算法进行电影推荐的笔记。通过矩阵分解的协同过滤方法,详细介绍了如何在Spark Mllib库中应用ALS进行推荐系统开发。数据集来源于GroupLens,可在给出的链接中获取。
摘要由CSDN通过智能技术生成

Spark 学习笔记可以follow这里:https://github.com/MachineLP/Spark-

数据下载:https://grouplens.org/datasets/movielens/latest/

ALS(Alternating Least Squares)算法是基于矩阵分解的协同过滤算法中的一种,它已经集成到Spark的Mllib库中,使用起来比较方便。

代码如下:

import os
import argparse
import time
import gc
import sys
#下面这些目录都是你自己机器的Spark安装目录和Java安装目录
os.environ['SPARK_HOME'] = "/Users/liupeng/spark/spark-2.4.0-bin-hadoop2.7/"
 
sys.path.append("/Users/liupeng/spark/spark-2.4.0-bin-hadoop2.7/bin")
sys.path.append("/Users/liupeng/spark/spark-2.4.0-bin-hadoop2.7/python")
sys.path.append("/Users/liupeng/spark/spark-2.4.0-bin-hadoop2.7/pytho
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MachineLP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值