Soft Filter Pruning(SFP)算法笔记

本文介绍了Soft Filter Pruning (SFP) 算法,一种用于加速深度卷积神经网络的模型压缩方法。与Hard Filter Pruning相比,SFP在剪枝后仍保留被剪枝卷积核,允许它们在后续训练中继续迭代,从而在不使用fine-tune的情况下也能获得良好效果。通过计算卷积核的L2-norm并依据剪枝概率进行剪枝,SFP在多个epoch中逐步优化模型,有效减少计算量。实验表明,SFP在CIFAR-10和ImageNet数据集上表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文:Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks
论文链接:https://www.ijcai.org/proceedings/2018/0309.pdf
代码链接:https://github.com/he-y/soft-filter-pruning

这篇是IJCAI 2018的关于模型加速压缩的文章,思想简洁而且有效,主要是和Hard Filter Pruning(HFP)做对比,HFP是比较常见的剪枝方式,一般是按照某些指标对卷积核进行排序,然后直接剪掉不符合指标的卷积核,然后做fine tune,fine tune的时候网络中就不包含那些被剪掉的卷积核。这篇文章主要提出了通过Soft Filter Pruning (SFP)做模型加速,SFP和HFP的不同点在于剪掉的卷积核依然参与下一次迭代更新,而并不是剪掉一次就永远没有了,而且SFP在不采用fine tune的情况下依然能够有不错的效果,因为SFP在每个epoch结束后会进行剪枝,剪枝后就会再训一个epoch,然后继续剪枝,这种方式显然也比HFP省时间。之所以要采用SFP,很重要的一个原因是为了提高模型的效果,因为HFP那种方式相当于直接丢掉剪掉的卷积核,而SFP相对而言没那么极端,这也是这两种剪枝方式名称中soft和hard的含义。

Figure1是关于Hard Filter Pruning和Soft Filt

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值