IOU-Net 算法笔记

本文介绍了ECCV2018论文IOU-Net,该论文针对目标检测中分类得分不能准确反映预测框准确性的问题,提出了IOU-guided NMS和optimization-based bbox refinement。IOU-guided NMS利用回归得分而非分类得分进行NMS,优化了框的选择。optimization-based方法改善了框的位置迭代回归,提高了预测准确性。此外,文章还引入了PrROI Pooling以减小特征提取误差。
摘要由CSDN通过智能技术生成

论文:Acquisition of Localization Confidence for Accurate Object Detection
论文链接:https://arxiv.org/abs/1807.11590

这篇ECCV2018的文章个人非常喜欢,我们知道在目标检测算法中最后一般都会通过NMS算法移除重复预测框,移除的依据是预测框的分类得分(classification confidence,也就是softmax层的概率输出),但是这种依据并不能很好地表征预测框的准确性,换句话说对于同一个ground truth而言,分类得分高的预测框并不一定比分类得分低的预测框好,这样就容易导致那些分类得分低,但是坐标和ground truth更接近,也就是坐标回归更准确的预测框在NMS阶段被过滤掉,导致最终指标的下降。

因此这篇文章就提出IOU-Net,通过预测检测框和ground truth的IOU来解决这2个问题:1、提出IOU-guided NMS,也就是在NMS阶段引入回归得分(localization confidence)作为排序指标而不是采用传统的分类得分。2、提出optimization-based bbox refinement替换传统的regression-based方法,提高了回归部分的可解释性。另外这篇文章还提出了Precise ROI Pooling(PrROI Pooling),通过积分方式计算ROI特征使得前向计算的误差进一步降低,同时反向传播时基于连续输入值计算梯度使得反向传播连续可导,相比之下ROI Pooling和ROI Align由于采用量化或几个点插值方式求ROI特征,不可避免地带来一些噪声,而且在反向求导时只对特定输入回传梯度。

Figure1是关于这篇文章出发点的介绍,具体而言就是说明了前面提到的2个问题。
(a)说明了用预测框的分类得分作为NMS的依据的缺点。(a)中对比了模型预测框的分类得分和回归得分两个指标,其中红色框和绿色框都是模型对同一个ground truth(也就是黄色框)的预测框,红色框的分类得分比绿色框高,因此只要红色框和绿色框的IOU超过NMS算法设定的阈值(比如常用的0.5),那么绿色框就会被NMS过滤掉。但从(a)的3张图像可以直观上看出绿色框的预测结果要好于红色框,同时通过计算红绿预测框的回归得分(这个回归得分是作者定义的)可以看出绿色框的回归得分要高于红色框。
(b)说明了传统的基于回归目标的框位置迭代回归存在的缺点。(b)中上面一行图像表示传统的基于回归(regression-based)的预测框确定过程,可以看到随着迭代次数的进行,预测框的坐标准确性逐渐降低(在开始阶段是上升了,图中显示的是下降的过程),这也就是文中说的非单调性(non-monotonic)。我们知道传统的基于回归的框预测方式是通过坐标点来监督的,比如常用的x、y、w和h的偏置,显然,假如你预测框的中心点坐标和宽高和ground truth尽可能接

评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值