pytorch
文章平均质量分 56
页页读
这个作者很懒,什么都没留下…
展开
-
SAM(segment anything) 中MaskDecoder过程图示
sam maskdecoder 图示原创 2023-07-27 14:36:55 · 545 阅读 · 0 评论 -
tensor.gather()的使用(pytorch)
tensor.gather的使用(pytorch)tensor.gather(dim, indexs)功能: 在dim维度上,按照indexs选择元素,返回一个和indexs维度相同大小的tensor。它和torch.gather功能是一样的。torch.gather()官方文档注意: 这里indexs必须也是Tensor,并且维度与input相同例子:>>>import torch>>>a = torch.Tensor([[1,2,3,4,5,6原创 2020-10-23 15:41:06 · 7555 阅读 · 2 评论 -
pytorch 中Tensor.new()的使用
pytorch 中Tensor.new()的使用一、作用创建一个新的Tensor,该Tensor的type和device都和原有Tensor一致,且无内容。二、使用方法如果随机定义一个大小的Tensor,则新的Tensor有两种创建方法,如下:inputs = torch.randn(m, n) new_inputs = inputs.new()new_inputs = torch.Tensor.new(inputs)三、具体代码import torch rectangle_h转载 2020-09-05 16:16:45 · 8905 阅读 · 1 评论 -
BatchNorm、LayerNorm、InstanceNorm、GroupNorm区别
pytorch中BatchNorm、LayerNorm、InstanceNorm、GroupNorm区别BN,LN,IN,GN从学术化上解释差异:BatchNorm:batch方向做归一化,算NHW的均值,对小batchsize效果不好;BN主要缺点是对batchsize的大小比较敏感,由于每次计算均值和方差是在一个batch上,所以如果batchsize太小,则计算的均值、方差不足以代表整个数据分布LayerNorm:channel方向做归一化,算CHW的均值,主要对RNN作用明显;Instan.转载 2020-08-31 15:32:06 · 2398 阅读 · 1 评论 -
pytorch 中 view() 地址连续的实验
在view()的使用官方文档中, view()要求被操作的Tensor是地址连续的, 可以通过tensor.is_contiguous()来查看它是否连续,如果不连续,就需要使用Tensor.contiguous()来把它转化为地址连续的张量.或者使用Tensor.reshape()代替.这里我们来做两组实验:>>> import torch>>> a = torch.randn(2,3,4)>>> a.shapetorch.Size([2,原创 2020-07-27 15:45:42 · 1346 阅读 · 1 评论 -
pytorch 两个不同纬度的Tensor相减是怎么实现的?
pytorch 两个不同纬度的Tensor相减是怎么实现的?dim小的会复制到和dim大的一方相同,再相减.例子:>>> import torch>>> d = torch.Tensor([[[1,2,3],[4,5,6],[7,8,9]]])>>> dtensor([[[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]])>>> d.shapetorc原创 2020-07-18 22:45:20 · 6042 阅读 · 0 评论 -
nn.moduleList 和Sequential由来、用法和实例 —— 写网络模型
对于cnn前馈神经网络如果前馈一次写一个forward函数会有些麻烦,在此就有两种简化方式,ModuleList和Sequential。其中Sequential是一个特殊的module,它包含几个子Module,前向传播时会将输入一层接一层的传递下去。ModuleList也是一个特殊的module,可以包含几个子module,可以像用list一样使用它,但不能直接把输入传给ModuleList。下面举例说明。文章目录一、nn.Sequential()对象1、模型建立方式第一种写法:第二种写法:第三种写法:转载 2020-06-30 17:47:47 · 341 阅读 · 0 评论 -
pytorch-----过拟合(Trick)-交叉验证
俩个问题1.怎么检测过拟合2.怎么减少过拟合如何检测overfittingtrain -val-testimport torchimport torch.nn as nnimport torch.nn.functional as Fimport torch.optim as optimfrom torchvision import datasets,transfor...转载 2019-12-14 22:49:21 · 576 阅读 · 1 评论 -
PyTorch hook提取任意层 和关于 PyTorch backward 过程的理解(二)
在看pytorch官方文档的时候,发现在nn.Module部分和Variable部分均有hook的身影。感到很神奇,因为在使用tensorflow的时候没有碰到过这个词。所以打算一探究竟。文章目录[隐藏]1Variable 的 hook 1.1register_hook(hook) 2nn.Module的hook 2.1register_forward_hook(ho...转载 2019-12-14 11:49:24 · 816 阅读 · 0 评论 -
pytorch中提取任意层特征(一)
又找到了更好的办法:PyTorch hook提取任意层 和关于 PyTorch backward 过程的理解(二)个人总结,pytorch中提取任意层的feature有两种方法,这两种方法是根据网络构建的方法不同而产生的;首先来介绍第一种:以mobileFaceNet为例,看一下mobileFace构建的网络代码:class MobileFaceNet(Module):...转载 2019-12-13 11:48:28 · 1950 阅读 · 0 评论 -
pytorch 从 清华源 安装
step1:安装anacoda 下载地址bash Anaconda3-2018.12-Linux-x86_64.sh1s...转载 2019-12-03 21:15:33 · 642 阅读 · 0 评论 -
Pytorch中的学习率衰减及其用法
学习率衰减是一个非常有效的炼丹技巧之一,在神经网络的训练过程中,当accuracy出现震荡或loss不再下降时,进行适当的学习率衰减是一个行之有效的手段,很多时候能明显提高accuracy。Pytorch中有两种学习率调整(衰减)方法:使用库函数进行调整; 手动调整。1. 使用库函数进行调整:Pytorch学习率调整策略通过 torch.optim.lr_sheduler 接口实现...转载 2019-11-28 10:04:02 · 2214 阅读 · 2 评论 -
Pretrainedmodels for Pytorch (Work in progress)
原文链接:https://www.cnblogs.com/houjun/p/9822096.htmlThe goal of this repo is:to help to reproduce research papers results (transfer learning setups for instance), to access pretrained ConvNets wi...转载 2019-11-24 19:23:25 · 1773 阅读 · 0 评论 -
以SSD各层为例对反卷积参数进行设置
从最末尾一层 到初始各层上采样参数设置示例:import torchfrom torch import nnfrom torch.nn import initfrom torch.autograd import Variabledef deconv(x, k=3, s=2, p=1): i = x.size(1) o = x.size(1) dconv = ...原创 2019-10-27 23:48:06 · 358 阅读 · 0 评论 -
pytorch对各层进行可视化
https://github.com/utkuozbulak/pytorch-cnn-visualizations原创 2019-10-26 12:24:42 · 1014 阅读 · 0 评论 -
pytorch visdom 讲的比较好的使用方法说明
有些图片未加载过来,请看原文:https://ptorch.com/news/77.html一、Visdompytorch Visdom可视化,是一个灵活的工具,用于创建,组织和共享实时丰富数据的可视化。支持Torch和Numpy。二、概述Visdom旨在促进(远程)数据的可视化,重点是支持科学实验。https://camo.githubusercontent.com/2...转载 2019-10-26 12:07:00 · 1108 阅读 · 0 评论 -
[pytorch函数] .expand() .gt() .t()
1 .expand()1. 返回tensor的一个新视图,单个维度扩大为更大的尺寸。tensor也可以扩大为更高维,新增加的维度将附在前面。 扩大tensor不需要分配新内存,只是仅仅新建一个tensor的视图,其中通过将stride设为0,一维将会扩展位更高维。任何一个一维的在不分配新内存情况下可扩展为任意的数值。 x = torch.Tensor([[1], [...转载 2019-09-12 12:05:56 · 10082 阅读 · 1 评论 -
pytorch源码分析之torch.utils.data.Dataset类和torch.utils.data.DataLoader类
详解:https://blog.csdn.net/qq_36653505/article/details/83351808转载 2019-06-14 09:57:34 · 393 阅读 · 0 评论