目标检测
文章平均质量分 79
页页读
这个作者很懒,什么都没留下…
展开
-
【基础知识】Swin Transformer 中的“滑动窗口”有什么作用?
Swin Transformer 是一种基于 Transformer 架构的,专为视觉任务设计的创新模型。它由微软研究院提出,并迅速成为计算机视觉领域的热门研究方向,特别是在图像分类、目标检测和语义分割等任务上表现出色。Swin Transformer 的核心优势在于其能够有效处理图像中的层次性结构和大尺度变化,同时保持较高的计算效率。:与传统的Transformer模型不同,Swin Transformer 引入了层次化的设计,使其能够更有效地处理不同尺寸的图像。原创 2024-03-12 10:53:08 · 1063 阅读 · 0 评论 -
F1-score与Precision、Recall的关系公式
F1-score与Precision、Recall的关系公式link传统的F-measure或balanced F-score (F1 score)是精度和召回率的调和平均值:是FβF_\betaFβ 取 β=1\beta = 1β=1时的特殊情况,FβF_\betaFβ:注释:原创 2020-09-10 16:30:29 · 2231 阅读 · 0 评论 -
对SSD计算mAP的过程进行详解,按要介绍!
完整代码见最后!一、(test_net函数)对测试img进行推断并保存测试后的结果首先是先将测试数据集送入net进行推断出来detections,存入det_file为pickle文件,这是为了再次评测的时候,如果网络没变的话就直接从pickle中取出上次推断的结果进行评测就好了。代码:def test_net(save_folder, net, cuda, dataset,...原创 2019-10-29 13:17:26 · 3459 阅读 · 6 评论 -
目标检测中的precision,recall,AP,mAP计算详解
大雁与飞机假设现在有这样一个测试集,测试集中的图片只由大雁和飞机两种图片组成,如下图所示:假设你的分类系统最终的目的是:能取出测试集中所有飞机的图片,而不是大雁的图片。现在做如下的定义:True positives : 飞机的图片被正确的识别成了飞机。True negatives: 大雁的图片没有被识别出来,系统正确地认为它们是大雁。False positives: 大雁的图片被错误...转载 2019-10-16 11:27:33 · 2902 阅读 · 1 评论 -
VOC数据集介绍及制作自己的VOC
原文链接:https://www.cnblogs.com/sdu20112013/p/10801383.html转载 2019-07-24 08:53:01 · 1586 阅读 · 0 评论