机器学习的数学基础(二、线性代数)(阅读笔记------1.行列式)

机器学习的数学基础-(二、线性代数)
原文链接:https://zhuanlan.zhihu.com/p/36584206

推荐 同济大学数学系编写的《工程数学------线性代数》第六版
出版社:高等教育出版社 出版时间:2014年06月
稳居当当教科书畅销书单前列。

1. 行列式

1.1. 二阶与三阶行列式

用消元法求解二元线性方程组,由此引入二阶行列式,并扩展到三阶行列式。

1.2. 全排列与对换

当某个元素的先后次序与标准次序不同时,就说它构成了一个逆序
一个排列中所有逆序的总数叫做这个排列的逆序数
逆序数为奇数的队列叫做奇排列。逆序数为偶数的队列叫做偶排列
定理 一个排列中的任意两个元素对换,排列改变奇偶性。

1.3. n阶行列式的定义

假设有 n 2 n^2 n2个数,排成n行n列的数表

a 11 a 12 ⋯ a 1 m a 21 a 22 ⋯ a 2 m ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯   a n m \begin{matrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots\ & a_{nm} \\ \end{matrix} a11a21an1a12a22an2 a1ma2manm

作出表中位于不同行不同列的n个数的乘积,并冠以符号 ( − 1 ) t (-1)^t (1)t,得到形如
( − 1 ) t a 1 p 1 a 2 p 2 . . . a n p n \begin{matrix} (-1)^ta_{1p_1} a_{2p_2}& ... & a_{np_n} \end{matrix} (1)ta1p1a2p2...anpn
的项,其中 p 1 p 2 . . . p n p_1p_2 ... p_n p1p2...pn为自然数 1 , 2 , . . . , n 1,2, ... ,n 1,2,...,n的一个排列,t为这个排列的逆序数。由于这样的排列共有n!个,因为形如上式的项共有n!项。所有这n!项的代数和
∑ ( − 1 ) t a 1 p 1 a 2 p 2 . . . a n p n \begin{matrix} \sum(-1)^ta_{1p_1} a_{2p_2}& ... & a_{np_n} \end{matrix} (1)ta1p1a2p2...anpn
称为n阶行列式(n-order determinant),记作
D = ∣ a 11 a 12 . . . a 1 n a 21 a 23 . . . a 2 n . . . . . . . . . a n 1 a n 3 . . . a n n ∣ D= \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{23} & ... & a_{2n} \\ & & ......... & \\ a_{n1} & a_{n3} & ... & a_{nn} \\ \end{vmatrix} D=a11a21an1a12a23an3..................a1na2nann
主对角线以下(上)的元素都为0的行列式叫做上(下)三角形行列式
主对角线以下和以上都为0的行列式叫做对角行列式

1.4. 行列式的性质

性质1 行列式与它的转置行列式相等。
性质2 对换行列式的两行(列),行列式变号。
性质3 行列式的某一行(列)中所有元素都同乘同一个数k,等于用数k乘以此行列式。
性质4 行列式中如果有两行(列)元素成比例,则此行列式等于零。
性质5 若行列式的某一行(列)的元素都是两数之和:
D = ∣ a 11 a 12 . . . a 1 n . . . . . . . . . a i 1 + a i 1 ′ a i 2 + a i 2 ′ . . . a i n + a i n ′ . . . . . . . . . a n 1 a n 3 . . . a n n ∣ D= \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n} \\ & & ......... & \\ a_{i1}+ a^{'}_{i1} & a_{i2}+ a^{'}_{i2} & ... &a_{in}+ a^{'}_{in} \\ & & ......... & \\ a_{n1} & a_{n3} & ... & a_{nn} \\ \end{vmatrix} D=a11ai1+ai1an1a12ai2+ai2an3...........................a1nain+ainann
则D等于下列两个行列式之和:
D = ∣ a 11 a 12 . . . a 1 n . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . a n 1 a n 3 . . . a n n ∣ + ∣ a 11 a 12 . . . a 1 n . . . . . . . . . a i 1 ′ a i 2 ′ . . . a i n ′ . . . . . . . . . a n 1 a n 3 . . . a n n ∣ D= \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n} \\ & & ......... & \\ a_{i1}& a_{i2} & ... &a_{in} \\ & & ......... & \\ a_{n1} & a_{n3} & ... & a_{nn} \\ \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n} \\ & & ......... & \\ a^{'}_{i1} & a^{'}_{i2} & ... &a^{'}_{in} \\ & & ......... & \\ a_{n1} & a_{n3} & ... & a_{nn} \\ \end{vmatrix} D=a11ai1an1a12ai2an3...........................a1nainann+a11ai1an1a12ai2an3...........................a1nainann
性质6 把行列式的某一行(列)的各元素乘同一个数然后加到另一行(列)对应的元素上去,行列式不变。

1.5. 行列式按行(列)展开

在n阶行列式中,把(i,j)元 a i j a_{ij} aij所在的第i行和第j列划去后,留下来的n-1阶行列式叫做(i,j)元 a i j a_{ij} aij余子式,记作 M i j M_{ij} Mij;记
A i j = ( − 1 ) i + j M i j A_{ij} = (-1)^{i+j}M_{ij} Aij=(1)i+jMij
$A_{ij} 叫 做 ( i , j ) 元 叫做(i,j)元 ija_{ij}$的代数余子式

引理 一个n阶行列式,如果其中第i行所有元素除(i,j)元 a i j a_{ij} aij外都为零,那么这个行列式等于 a i j a_{ij} aij与它的代数余子式的乘积,即
D = a i j A i j D = a_{ij}A_{ij} D=aijAij

定理2 行列式等于它的任一行(列)的各元素与对应的代数余子式乘积之和,即
D = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n ( i = 1 , 2 , . . . , n ) D = a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in} \qquad (i=1,2,...,n) D=ai1Ai1+ai2Ai2+...+ainAin(i=1,2,...,n)

D = a 1 i A 1 i + a 2 i A 2 i + . . . + a n i A n i ( i = 1 , 2 , . . . , n ) D = a_{1i}A_{1i}+a_{2i}A_{2i}+...+a_{ni}A_{ni} \qquad (i=1,2,...,n) D=a1iA1i+a2iA2i+...+aniAni(i=1,2,...,n)

这个定理叫做行列式按行(列)展开法则

范德蒙德(Vandermonde)行列式
D n = ∣ 1 2 . . . 1 x 1 x 2 . . . x n x 1 2 x 2 2 . . . x n 2 . . . . . . . . . x 1 n − 1 x 2 n − 1 . . . x n n − 1 ∣ = ∏ n ≥ i ≥ j ≥ 1 ( x i − x j ) D_n= \begin{vmatrix} 1 & 2 & ... & 1 \\ x_1 & x_2 & ... & x_n \\ x^2_1 & x^2_2 & ... & x^2_n \\ & & ......... & \\ x^{n-1}_1 & x^{n-1}_2 & ... & x^{n-1}_n \\ \end{vmatrix} =\prod_{n \geq i \geq j \geq 1}{(x_i-x_j)} Dn=1x1x12x1n12x2x22x2n1.....................1xnxn2xnn1=nij1(xixj)

推论 行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即
D = a i 1 A j 1 + a i 2 A j 2 + . . . + a i n A j n ( i ≠ j ) D = a_{i1}A_{j1}+a_{i2}A_{j2}+...+a_{in}A_{jn} \qquad (i\neq j) D=ai1Aj1+ai2Aj2+...+ainAjn(i=j)

D = a 1 i A 1 j + a 2 i A 2 j + . . . + a n i A n j ( i ≠ j ) D = a_{1i}A_{1j}+a_{2i}A_{2j}+...+a_{ni}A_{nj} \qquad (i\neq j) D=a1iA1j+a2iA2j+...+aniAnj(i=j)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值