图像检索公开数据集

人工智能(AI)类似于建造一艘火箭飞船,需要一个巨大的引擎和大量的燃料。火箭引擎是深度学习模型,燃料是我们可以为这些算法提供的大量数据。

-------Andrew Ng

数据是一切算法应用的基础,无论是监督学习需要标注好的数据进行训练,还是无监督学习需要对数据进行分析、考量,数据都是不可或缺的。一个任务或一项工程的大力度推进或发展离不开公开数据集的构建,重复
的进行数据采集、标注是耗费人力和物力的,并且同一任务在不同数据集上的比较也是毫无意义的,所以公开数据集是十分重要的基础架构。在工程应用上,如果能找到与业务场景相关的公开数据,那无疑是十分开心的一件事情。
除了一些著名的数据集,图像公开数据集汇总这个网站提供了大量的图片数据集的汇总介绍,包括多个任务方面,分类、检测、分割、检索等。

下面是总结的一些图像检索可用的公开数据集,会以内容为分(持续更新):

地标建筑

名称时间规模收集方式规模特点论文
Oxford5K2007牛津大学建筑通过关键字在Flickr上查询下载图片 每一个query对应good、ok、junk list文件,作为ground truthtotal:5062 query: 55 (11*5)除提供.jpg格式图片外,还提供sift描述符的压缩二进制文件等Object retrieval with large vocabularies and fast spatial matching(cvpr2007)
Paris6k2008巴黎地标与Oxford5K相同(查询关键字不同)total:6412 query: 55(11*5)仅提供.jpg格式图片Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases(cvpr2008)
Revisiting Oxford2018牛津大学建筑基于Oxford5kquery 50->70修复原来数据标注问题 增加数据 标签细化Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking(CVPR2018)
Revisiting Paris2018巴黎地标基于Paris6Kquery 50->70修复原来数据标注问题 增加数据 标签细化Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking(CVPR2018)
Google landmarks2017地标数据-total:200万张图片 3万个独特地标kaggle 比赛Large-Scale Image Retrieval with Attentive Deep Local Features( ICCV’17)
Google landmarks-v22019地标数据摄影社区众包进行实例标注total:超过500万张图像 超过20万个不同的地标kaggle 比赛Detect-to-Retrieve: Efficient Regional Aggregation for Image Search (CVPR’19)
Landmark 3D2012地标数据web 图片和3D模型(点云)total:4518025个地标 ;45,180个数据库图像(每个地标1.4K2K);10,000个正面query用于评估(每个标志400个);3D模型中约270万个3D点(每个地标29K223K); 约有5800万个SIFT3D Visual Phrases for Landmark Recognition". in Proc. of the 25th IEEE Conference on Computer Vision and Pattern Recognition (CVPR2012)
Paris500k2013地标建筑数据集是从Flickr和Panoramio收集的地标图像。图像具有“自然”分布,数据集非常具有挑战性,因为存在重复和近似重复,以及大量不相关的图像,例如派对,宠物等的照片total:501,356提供79个地标建筑的94303张图片clustering ground truthDiscovering Details and Scene Structure with Hierarchical Iconoid Shift(ICCV2013)
ZuBuD/ZuBuD+2003/2017建筑ZuBuD+ 是对ZuBuD的扩展,主要是增加了测试图片 评估方式:TOP5total:1005 training data/1005 test_balance data每个图像有201个建筑物,每个视图有五个视图,提供训练数据、相同数量的测试数据、ground truth file 和 用于评估的python程序A location-aware embedding technique for accurate landmark recognition(2017)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值