Windows 系统中安装 flash - attn

#工作记录

一、下载 flash_attn

在 Windows 系统中,直接使用 pip 在线安装 flash_attn 很可能失败。

建议从 kingbri1/flash-attention 的 GitHub 发布页面 下载与当前 Python、torch 和 CUDA 版本匹配的 .whl 文件,并从本地进行安装。

Linux版本:

Dao-AILab/flash-attention:快速且节省内存的精确注意力

 Windows版本:

Releases · kingbri1/flash-attention · GitHub

 

下载时需注意版本匹配

  • CUDA 版本

  • torch 版本

  • Python 版本

在该发布页面中,找到包含以下版本信息的文件:

  • 文件名中包含 cu124(代表 CUDA 12.4)

  • 文件名中包含 torch2.6.0

  • 文件名中包含 cp310(代表 Python 3.10)

例如,文件名为:

flash_attn-2.7.4.post1+cu124torch2.6.0cxx11abiFALSE-cp310-cp310-win_amd64.whl

注意:如果无法访问上述 GitHub 发布页面,可能是网络问题或链接有误。

请检查网页链接的合法性,并适当重试。

如果问题仍然存在,可以尝试使用其他网络工具或代理访问该页面。

二、准备安装文件

下载好 .whl 文件后,可以选择以下两种方式以便后续安装:

  1. 将文件移至项目文件夹:将下载的 .whl 文件移动到你的项目文件夹中。

  2. 保留文件在下载目录:如果不想移动文件,可以进入下载目录并复制文件的完整路径。

如:

"E:\Downloads\flash_attn-2.7.4.post1+cu124torch2.5.1cxx11abiFALSE-cp310-cp310-win_amd64.whl"

三、安装 flash_attn

使用 pip 从本地安装 flash_attn,具体操作如下:

方式一:在项目文件夹内安装

如果 .whl 文件已移动到项目文件夹,安装命令格式为:

pip install 文件名.whl

例如,文件名为

flash_attn-2.7.4.post1+cu124torch2.5.1cxx11abiFALSE-cp310-cp310-win_amd64.whl

则命令为:

pip install flash_attn-2.7.4.post1+cu124torch2.6.0cxx11abiFALSE-cp310-cp310-win_amd64.whl

 

方式二:使用文件地址安装

如果未移动文件,可以直接使用文件的完整路径进行安装。

例如,文件路径为:

"E:\Downloads\flash_attn-2.7.4.post1+cu124torch2.5.1cxx11abiFALSE-cp310-cp310-win_amd64.whl"

则命令为:

pip install "E:\Downloads\flash_attn-2.7.4.post1+cu124torch2.5.1cxx11abiFALSE-cp310-cp310-win_amd64.whl"

补充说明

  • 直接使用 pip 在线安装 flash_attn 可能会失败。因此,从 GitHub 发布页面下载 .whl 文件并从本地安装是更可靠的方法。

  • 在实际操作中,即使 CUDA 和 torch 的版本不完全匹配,也可能成功安装 flash_attn。但为了确保最佳性能和兼容性,建议使用完全匹配的版本。

希望这些步骤能帮助我们顺利完成安装!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

love530love

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值