pytorch用VGG11识别Kaggle的猫狗大战数据集(训练+预测单张输入图片代码)

Kaggle猫狗大战的数据集下载链接:https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition

这是VGG的结构,红色框的则是VGG11。

一,写VGG代码时,首先定义一个 vgg_block(n,in,out)方法,用来构建VGG中每个block中的卷积核和池化层:

n是这个block中卷积层的数目,in是输入的通道数,out是输出的通道数

有了block以后,我们还需要一个方法把形成的block叠在一起,我们定义这个方法叫vgg_stack:

def vgg_stack(num_convs, channels):  # vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512)))
    net = []
    for n, c in zip(num_convs, channels):
        in_c = c[0]
        out_c = c[1]
        net.append(vgg_block(n, in_c, out_c))
    return nn.Sequential(*net)

右边的注释:

vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512)))

里,(1, 1, 2, 2, 2)表示五个block里,各自的卷积层数目,((3, 64), (64, 128), (128, 256), (256, 512), (512, 512))表示每个block中的卷积层的类型,如(3,64)表示这个卷积层输入通道数是3,输出通道数是64。vgg_stack方法返回的就是完整的vgg11模型了。
 

接着定义一个vgg类,包含vgg_stack方法:

#vgg类
class vgg(nn.Module):
    def __init__(self):
        super(vgg, self).__init__()
        self.feature = vgg_net
        self.fc = nn.Sequential(
            nn.Linear(512, 100),
            nn.ReLU(True),
            nn.Linear(100, 10)
        )
 
    def forward(self, x):
        x = self.feature(x)
        x = x.view(x.shape[0], -1)
        x = self.fc(x)
        return x

最后:

net = vgg()  #就能获取到vgg网络

那么构建vgg网络完整的pytorch代码是:

from torch import nn

def vgg_block(num_convs, in_channels, out_channels):
    net = [nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.ReLU(True)]

    for i in range(num_convs - 1):  # 定义后面的许多层
        net.append(nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1))
        net.append(nn.BatchNorm2d(out_channels))
        net.append(nn.ReLU(True))

    net.append(nn.MaxPool2d(2, 2))  # 定义池化层
    return nn.Sequential(*net)


# 下面我们定义一个函数对这个 vgg block 进行堆叠
def vgg_stack(num_convs,
              channels):  # vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512)))
    net = []
    for n, c in zip(num_convs, channels):
        in_c = c[0]
        out_c = c[1]
        net.append(vgg_block(n, in_c, out_c))
    return nn.Sequential(*net)

vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512)))
# vgg类
class vgg(nn.Module):
    def __init__(self):
        super(vgg, self).__init__()
        self.feature = vgg_net
        self.fc = nn.Sequential(
            nn.Linear(25088, 64),
            nn.ReLU(True),
            nn.Linear(64, 2)
        )

    def forward(self, x):
        x = self.feature(x)
        x = x.view(x.shape[0], -1)
        x = self.fc(x)
        return x

def get_vgg():
    # 获取vgg网络
    net = vgg()
    return net

至此,VGG的网络就构建完毕。

 

二,基于VGG11的猫狗大战训练代码:

import os
import random
from PIL import Image
import torch.utils.data as data
import numpy as np
import torchvision.transforms as transforms
import torch
from vgg import get_vgg
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.optim.lr_scheduler import *
import torchvision.transforms as transforms
import numpy as np
import os

#对数据集的读取
class DogCat(data.Dataset):
    def __init__(self, root, transform=None, train=True, test=False):
        self.test = test
        self.train = train
        self.transform = transform
        imgs = [os.path.join(root, img) for img in os.listdir(root)]

        # test1: data/test1/8973.jpg
        # train: data/train/cat.10004.jpg

        if self.test:
            imgs = sorted(imgs, key=lambda x: int(x.split('.')[-2].split('/')[-1]))
        else:
            imgs = sorted(imgs, key=lambda x: int(x.split('.')[-2]))
        imgs_num = len(imgs)
        if self.test:
            self.imgs = imgs
        else:
            random.shuffle(imgs)
            if self.train:
                self.imgs = imgs[:int(0.7 * imgs_num)]
            else:
                self.imgs = imgs[int(0.7 * imgs_num):]
    #作为迭代器必须有的方法
    def __getitem__(self, index):
        img_path = self.imgs[index]
        if self.test:
            label = int(self.imgs[index].split('.')[-2].split('/')[-1])
        else:
            label = 1 if 'dog' in img_path.split('/')[-1] else 0 #狗的label设为1,猫的设为0

        data = Image.open(img_path)
        data = self.transform(data)
        return data, label

    def __len__(self):
        return len(self.imgs)

#对数据集训练集的处理
transform_train=transforms.Compose([
	transforms.Resize((256,256)), #先调整图片大小至256x256
	transforms.RandomCrop((224,224)), #再随机裁剪到224x224
	transforms.RandomHorizontalFlip(), #随机的图像水平翻转,通俗讲就是图像的左右对调
	transforms.ToTensor(),
	transforms.Normalize((0.485,0.456,0.406),(0.229,0.224,0.2225)) #归一化,数值是用ImageNet给出的数值
])

#对数据集验证集的处理
transform_val=transforms.Compose([
	transforms.Resize((224,224)),
	transforms.ToTensor(),
	transforms.Normalize((0.485,0.456,0.406),(0.229,0.224,0.225)),
])

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')  # 若能使用cuda,则使用cuda
trainset = DogCat('F:/数据集/Cats_Dogs/train/all', transform=transform_train)
valset = DogCat('F:/数据集/Cats_Dogs/train/all', transform=transform_val)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True,num_workers=0)
valloader = torch.utils.data.DataLoader(valset, batch_size=64, shuffle=False,num_workers=0)
model = get_vgg()
model = model.to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9, weight_decay=5e-4) #设置训练细节
scheduler = StepLR(optimizer, step_size=3)
criterion = nn.CrossEntropyLoss()

def get_acc(output, label):
    total = output.shape[0]
    _, pred_label = output.max(1)
    num_correct = (pred_label == label).sum().item()
    return num_correct / total

def train(epoch):
    print('\nEpoch: %d' % epoch)
    scheduler.step()
    model.train()
    train_acc = 0.0
    for batch_idx,(img,label) in enumerate(trainloader):
        image=Variable(img.cuda())
        label=Variable(label.cuda())
        optimizer.zero_grad()
        out=model(image)
        loss=criterion(out,label)
        loss.backward()
        optimizer.step()
        train_acc = get_acc(out,label)
        print("Epoch:%d [%d|%d] loss:%f acc:%f" %(epoch,batch_idx,len(trainloader),loss.mean(),train_acc))

def val(epoch):
	print("\nValidation Epoch: %d" %epoch)
	model.eval()
	total=0
	correct=0
	with torch.no_grad():
		for batch_idx,(img,label) in enumerate(valloader):
			image=Variable(img.cuda())
			label=Variable(label.cuda())
			out=model(image)
			_,predicted=torch.max(out.data,1)
			total+=image.size(0)
			correct+=predicted.data.eq(label.data).cpu().sum()
	print("Acc: %f "% ((1.0*correct.numpy())/total))

for epoch in range(21):
    train(epoch)
    val(epoch)
torch.save(model, 'modelcatdog.pth')  # 保存模型

训练效果:

训练完成后会生成 一个名为 modelcatdog.pth的模型。

 

三,预测代码

import torch
import cv2
import torch.nn.functional as F
from vgg import vgg ##重要,虽然显示灰色(即在次代码中没用到),但若没有引入这个模型代码,加载模型时会找不到模型
from torchvision import datasets, transforms
from PIL import Image

classes = ('cat','dog')
if __name__ == '__main__':
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = torch.load('modelcatdog.pth')  # 加载模型
    model = model.to(device)
    model.eval()  # 把模型转为test模式

    img = cv2.imread("dog.jpg")  # 读取要预测的图片
    img = Image.fromarray(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
    trans = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
    ])

    img = trans(img)
    img = img.to(device)
    img = img.unsqueeze(0)  # 图片扩展多一维,因为输入到保存的模型中是4维的[batch_size,通道,长,宽],而普通图片只有三维,[通道,长,宽]
    output = model(img)
    prob = F.softmax(output,dim=1) #prob是2个分类的概率
    print(prob)
    value, predicted = torch.max(output.data, 1)
    print(predicted.item())
    print(value)
    pred_class = classes[predicted.item()]
    print(pred_class)

预测效果:

先找一张有小狗的图片:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值