FEA精度之网格加密(1)

本文探讨了在有限元分析(FEA)中如何通过网格加密提高计算精度。介绍了基于位移变化的网格加密策略,包括设置初始网格大小、循环计算以及判断收敛条件。通过静力仿真实验,展示了不同网格密度对最大位移的影响,验证了网格加密能逐步收敛到准确结果。同时,指出了全局加密方法的优缺点,并提出了以应力或应变作为参数的优化加密思路。
摘要由CSDN通过智能技术生成
在FE分析中,精确度是个绕不开的话题,因为离散,单元选择,截断,网格数量,网格形状等原因,会造成计算结果与实际结果产生误差。该系列文章主要介绍如何通过操纵Mesh,来达到提高计算精度目的。
1. 理论依据:如果单元选择正确,网格越密,计算精度越高。
基于此理论,采用如下网格加密策略:
1. 设置初始网格大小,建立FE模型
2. 调用Nastran计算,得到计算结果的位移最大值 D1
3. 设置整体网格加密百分比 50%(可根据实际情况调整)
4. 重新建立FE模型
5. 调用Nastran计算,得到计算结果的最大位移值 D2
6. 计算D2与D1的变化量:V = (D2-D1)/D1
7. 循环以上步骤,直到V小于某一数值为止。(也可设置循环次数来观察收敛情况)

基于此,静力仿真如下试验:
1. FaModel中建立有限元模型,四面体二阶单元(图1)。设置循环次数为3,加密比例为2(即网格尺寸为上次0.5)。每次仿真结束后,程序会自动读取结果,取得位移最大值,用以计算误差,收敛精度为5%(即两次计算
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值