手推记录-XGboost

xgboost 是集成学习boosting的一种,它的基础分类器是CART,即分类回归树。
下图就是CART树和一堆CART树的示例,用来判断一个人是否会喜欢计算机游戏:
这里写图片描述这里写图片描述

用多棵CART树做预测时,就是将各个树的预测分数相加。

y i ^ = ∑ k = 1 K f k ( x i ) , f k ⊆ K \widehat{y_i}=\sum_{k=1}^{K}f_k(x_i) ,f_k\subseteq \mathcal{K} yi =k=1Kfk(xi),fkK

其中 K K K表示有K棵CART树, f k f_k fk函数是第 k k k棵树得到的分数。

定义目标函数 o b j = ∑ i = 1 n l ( y i , y i ^ ) + ∑ k = 1 K Ω ( f k ) obj=\sum_{i=1}^{n}l(y_i,\widehat{y_i})+\sum_{k=1}^{K}\Omega (f_k) obj=i=1nl(yi,yi )+k=1KΩ(fk)

目标函数包括第一部分的损失函数和第二部分的正则项
xgboost在训练时,先优化第一棵树,之后第二棵,第三棵…直到优化完K棵树,真个过程如下图所示:

这里写图片描述

在第t步时,添加了一棵最优的CART树 f t f_t ft,这棵最优的CART树 f t f_t ft就是在现有的t-1棵树的基础上,使得目标函数最小的那棵CART树,

o b j ( t ) = ∑ i = 1 n l ( y i , y i ^ ( t ) ) + ∑ k = 1 K Ω ( f k ) = ∑ i = 1 n l ( y i , y i ^ ( t − 1 ) + f t ( x i ) ) + Ω ( f t ) + c o n s t a n t \begin{aligned} obj^{(t)}&=\sum_{i=1}^{n}l(y_i,\widehat{y_i}^{(t)})+\sum_{k=1}^{K}\Omega (f_k) \\ & = \sum_{i=1}^{n}l(y_i,\widehat{y_i}^{(t-1)}+f_t(x_i))+\Omega (f_t)+constant \end{aligned} obj(t)=i=1nl(yi,yi (t))+k=1KΩ(fk)=i=1nl(yi,yi (t1)+ft(xi))+Ω(ft)+constant

这里的 Ω ( f t ) \Omega (f_t) Ω(ft)是第t步时,当前的CART树的正则项,而 c o n s t a n t constant constant就是前t-1棵树的正则项了。
将损失函数进行泰勒二阶展开

o b j ( t ) = ∑ i = 1 n [ l ( y i , y i ^ ( t − 1 ) ) + g i f t ( x i ) + 1 2 h i f t 2 ( x i ) ] + Ω ( f t ) + c o n s t a n t obj^{(t)}=\sum_{i=1}^{n}[l(y_i,\widehat{y_i}^{(t-1)})+g_if_t(x_i)+\frac{1}{2}h_if_t^2(x_i)]+\Omega (f_t)+constant obj(t)=i=1n[l(yi,yi (t1))+gift(xi)+21hift2(xi)]+Ω(ft)+constant

其中 g i = ∂ l ( y i , y ^ i ( t − 1 ) ) ∂ y ^ i ( t − 1 ) , h i = ∂ 2 l ( y i , y ^ i ( t − 1 ) ) ∂ y ^ i ( t − 1 ) g_i=\frac{\partial l(y_i,\hat y_i^{(t-1)})}{\partial \hat y_i^{(t-1)}},h_i=\frac{\partial^2 l(y_i,\hat y_i^{(t-1)})}{\partial \hat y_i^{(t-1)}} gi=y^i(t1)l(yi,y^i(t1))hi=y^i(t1)2l(yi,y^i(t1))
再去掉常数项,

o b j ( t ) ≈ ∑ i = 1 n [ g i f t ( x i ) + 1 2 h i f t 2 ( x i ) ] + Ω ( f t ) obj^{(t)}\approx \sum_{i=1}^{n}[g_if_t(x_i)+\frac{1}{2}h_if_t^2(x_i)]+\Omega (f_t) obj(t)i=1n[gift(xi)+21hift2(xi)]+Ω(ft)

再看正则项,首先看CART树的另一个定义,
这里写图片描述
这里的 w w w函数是CART树打分的函数, q q q函数是将x定位到哪个叶子节点的函数。xgboost就使用了如下的正则化项,
Ω ( f t ) = γ T + 1 2 λ ∑ j = 1 T w j 2 \Omega (f_t)=\gamma T+\frac{1}{2} \lambda \sum_{j=1}^{T} w_j^2 Ω(ft)=γT+21λj=1Twj2

将其带入到目标函数,
o b j ( t ) ≈ ∑ i = 1 n [ g i f t ( x i ) + 1 2 h i f t 2 ( x i ) ] + Ω ( f t ) = ∑ i = 1 n [ g i f t ( x i ) + 1 2 h i f t 2 ( x i ) ] + γ T + 1 2 λ ∑ j = 1 T w j 2 = ∑ j = 1 T [ ∑ i ∈ I j g i + 1 2 ( ∑ i ∈ I j h i + λ ) w j 2 ] + γ T = ∑ j = 1 T [ G j + 1 2 ( H j + λ ) w j 2 ] + γ T \begin{aligned} obj^{(t)}&\approx \sum_{i=1}^{n}[g_if_t(x_i)+\frac{1}{2}h_if_t^2(x_i)]+\Omega (f_t)\\ &=\sum_{i=1}^{n}[g_if_t(x_i)+\frac{1}{2}h_if_t^2(x_i)]+\gamma T+\frac{1}{2} \lambda \sum_{j=1}^{T} w_j^2\\ &=\sum_{j=1}^{T}[\sum_{i \in I_j}g_i+\frac{1}{2}(\sum_{i \in I_j}hi+\lambda)w_j^2]+\gamma T\\ &=\sum_{j=1}^{T}[G_j+\frac{1}{2}(H_j+\lambda)w_j^2]+\gamma T \end{aligned} obj(t)i=1n[gift(xi)+21hift2(xi)]+Ω(ft)=i=1n[gift(xi)+21hift2(xi)]+γT+21λj=1Twj2=j=1T[iIjgi+21(iIjhi+λ)wj2]+γT=j=1T[Gj+21(Hj+λ)wj2]+γT

其中将 ∑ i ∈ I j g i \sum_{i \in I_j}g_i iIjgi简化为 G j G_j Gj,将 ∑ i ∈ I j h i \sum_{i \in I_j}h_i iIjhi简化为 H j H_j Hj

对于第t棵CART树的某一个确定的结构(可用 q ( x ) q(x) q(x)表示),所有的 G j G_j Gj H j H_j Hj都是确定的。而且上式中各个叶子节点的值 w j w_j wj之间是互相独立的。上式其实就是一个简单的二次式,我们很容易求出各个叶子节点的最佳值以及此时目标函数的值。
这里写图片描述

w j ∗ w_j^* wj的一个直观的解释是,假设分到 j 这个叶子节点上的样本只有一个,那么

w j ∗ = ( 1 h j + λ ) ∗ ( − g j ) w_j^*=(\frac{1}{h_j+ \lambda})*(-g_j) wj=(hj+λ1)(gj)

这个式子告诉我们, w j ∗ w^*_j wj的最优值就是负的梯度乘以一个系数,这个系数类似于随机梯度下降中的学习率。 h j h_j hj越大,这个系数越小,也就是学习率越小。 h j h_j hj越大代表在该点附近梯度变化非常剧烈,此时,我们在使用反向梯度更新时步子就要小,也就是权重系数要小。

o b j ∗ obj^* obj则是衡量了第t棵树结构的好坏。与叶子节点的值可是无关的。 o b j ∗ obj^* obj只和 G j G_j Gj H j H_j Hj T T T有关,而它们又只和树的结构 ( q ( x ) ) (q(x)) (q(x))有关。

这里写图片描述

有了评判CART树的标准,我们就可以构造出最优的第t棵树,怎么构造?树的结构有很多,不能每个结构都计算一次 o b j ∗ obj^* obj来确定哪个结构做最好。这里就采用逐步学习出最佳的树结构。当样本输入时,先找一个特定的特征j,然后在找该特定的值c,当特征j的值小于c时分到左节点,大于c分到右节点。
问题是怎么决定j和c,xgboost采用的是遍历。

我们以上文提到过的判断一个人是否喜欢计算机游戏为例子。最简单的树结构就是一个节点的树。我们可以算出这棵单节点的树的好坏程度obj*。解设我们先按年龄分,先将这一家五口人按照年龄做个排序

这里写图片描述
从左至右扫描,找出所有可能的切分点。当切分点确定时,用下列式子作为切分点好坏的标准。

这里写图片描述
这里的 G a i n Gain Gain其实是切分前后的差值。如果是正的,而且值越大说明 o b j ∗ obj^* obj下降得越多,如果是负数,也就是说,左边的这一项小于 γ \gamma γ项,说明切分后 o b j ∗ obj^* obj反而变大了。其实 γ \gamma γ是可以自己设定的阈值,也就说这个值越大,对切分点的要求就越严格。
递归地调用这个切分过程,就能获得一个相对较好的树结构。得到了最优的树结构,也就能找到最优的叶子节点,这样就完成了找出第t棵树的目的。之后再进行第t+1棵树,直到K棵树完成。

  • 5
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值