基于Tensorflow轻松实现XOR运算

26 篇文章 264 订阅 ¥9.90 ¥99.00
本文介绍了如何使用Tensorflow构建一个简单的多层神经网络来解决XOR问题。通过设置合适的隐藏层和学习率,演示了神经网络如何处理线性不可分的数据,并展示了在不同学习率下的训练效果。最后,讨论了学习率在优化过程中的重要性。
摘要由CSDN通过智能技术生成

对于“XOR”大家应该都不陌生,我们在各种课程中都会遇到,它是一个数学逻辑运算符号,在计算机中表示为“XOR”,在数学中表示为“\bigoplus”,学名为“异或”,其来源细节就不详细表明了,说白了就是两个a、b两个值做异或运算,若a=b则结果为0,反之为1,即“相同为0,不同为1”.

在计算机早期发展中,逻辑运算广泛应用于电子管中,这一点如果大家学习过微机原理应该会比较熟悉,那么在神经网络中如何实现它呢,早先我们使用的是感知机,可理解为单层神经网络,只有输入层和输出层(在吴恩达老师的系列教程中曾提到过这一点,关于神经网络的层数,至今仍有异议,就是说神经网络的层数到底包不包括输入层,现今多数认定是不包括的,我们常说的N层神经网络指的是隐藏层+输出层),但是感知机是无法实现XOR运算的,简单来说就是XOR是线性不可分的,由于感知机是有

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

beyond_LH

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值