密集匹配
CV陈智君
毕业于河海大学摄影测量与遥感专业,主要从事于室内定位与三维重建。
展开
-
匹配代价函数之ZNCC
零均值归一化积相关算法ZNCC,利用两个待匹配像素点邻域窗口内的像素,通过零均值归一化相似性度量公式来计算两个待匹配像素之间的相似程度。原创 2017-05-26 21:31:26 · 12050 阅读 · 5 评论 -
匹配代价函数之SAD
AD表示像素的灰度差绝对值,是SAD表示待匹配像素邻域内的像素的AD之和。原创 2017-05-26 17:14:13 · 5098 阅读 · 0 评论 -
密集匹配之区域生长RegionGrow
区域生长一般从一组种子点开始,按照视差连续性原则将更多的像素合并进入种子点,从而不断扩张种子点区域,直至达到设定的终止条件为止。与传统的局部匹配算法相比,区域生长算法加入了视差连续性约束,极大的提高了匹配的速度和正确度。 区域生长密集匹配算法的第一步是匹配一些同名点对作为初始种子点,种子点正确与否直接影响生长的结果。区域生长匹配只需少量的初始种子点即能生成较为密集的匹配点集,因此可原创 2017-05-27 13:31:31 · 2940 阅读 · 12 评论 -
密集匹配之半全局匹配SGBM
密集匹配,稠密匹配,多向动态规划原创 2017-05-27 14:42:18 · 10302 阅读 · 6 评论 -
密集匹配之动态规划DP
动态规划通常应用于最优化问题的求解中,Baker、Ohta 等将动态规划引入立体匹配中来获取视差图。动态规划匹配的过程可以分为两个阶段,建立视差空间和动态规划优化,将立体匹配问题转化为视差空间内寻找最优路径的问题。 密集匹配通常会充分利用影像间的核线约束条件,对立体像对进行核线纠正,这样同名像点肯定位于对应的同名核线上,降低了匹配的难度。视差空间影像DSI(Disparity Sp原创 2017-05-27 14:07:33 · 2364 阅读 · 0 评论 -
密集匹配之置信度传播BP
置信度传播是一种基于马尔科夫随机场理论的立体稠密匹配算法,马尔科夫随机场的具体理论这里不再详述,只对置信度传播立体匹配的实现原理做一定简述。 成对的马尔科夫模型是BP的基础,成对的含义就是包含显式节点和隐含节点。假设我们观察到像素yi的一些信息,需要据此推断隐含场景xi的信息,可以假设xi与yi之间存在一些统计以来关系,称之为似然函数。设,N为邻域系统,则可以用势函数来表示相邻节点原创 2017-05-31 15:15:56 · 1401 阅读 · 0 评论