
《AI大模型专题》
文章平均质量分 83
AI大模型专题:DeeptSeek本地模型安装,知识库搭建,模型微调等等
墨家巨子@俏如来
EasyJF开源团队成员,10 年Java开发及项目管理经验,在企业中承担项目经理、架构师等职位,喜欢研究技术,执着于对技术底层的探索及源码的剖析;喜欢写文章,享有阿里云专家博主、CSDN博客专家、Java领域优质创作者、华为云开发者联盟成员/技术博主(CSDN搜索-墨家巨子@俏如来)代表作《SpringCloud入门到精通》,《SpringCloud源码深度剖析》,《SpringBoot入门到精通》,《Spring源码深度剖析》等等
展开
-
第九章.干货干货!!!项目实战Langchain4j+Ollama+RAG开发智能挂号系统
前面我们学习了基于Langchain4j的大模型的很多玩法,今天我们把这些玩法整合成一个综合案例:智能挂号系统,案例不会特别复杂,主要功能包括医疗问答,挂号咨询,预约挂号,取消挂号等几个功能,其中会使用到的技术包括:RAG知识库,回话记忆功能,Tools的使用,流式输出,提示词等等,希望该案例可以一点打面,给你更多的遐想,那么下面我们就开始吧。我们的tools会比较复杂,因为智能挂号相关的能力都主要是通过tools调用数据库来完成的,tools中应该具备如下几个方法查询科室和医生查询用户的挂号单。原创 2025-05-02 07:18:04 · 1064 阅读 · 0 评论 -
第八章.干货干货!!!SpringAI手撸MCP服务
根据我们前面学习的知识我们知道,针对系统中不同的业务场景我们可以开发不同的tools来实现大模型调用,如果我们有多个AI应用都要实现相同的功能,那么可能就会在多个应用中定义重复的tools,导致一些重复的工作量,那么我们可以不可以吧通用的tools进行统一抽取(MCP-Server),然后AI应用通过某种协议(MCP-协议)去链接以达到复用的目的(有点像中台的感觉),如下使用百度地图举例所以最近有一个东西非常火:MCP。原创 2025-04-25 12:09:24 · 765 阅读 · 1 评论 -
第七章.干货干货!!!Langchain4j开发智能体-文生图文生视频
可能我们都用过三方的大模型如:文心一言,通义千问等的文生图/语音/视频的功能,当我们输入需求大模型就可以根据我们的需求生成对应的图片或者视频。那么在你的项目中可能也会有这样的需求,我们一起来看看如何实现它。好吧文章到这结束,本文介绍了如何通过百炼大模型实现文生图/文生视频等,其实学到这里你时候已经有想法搭建自己的大模型平台了呢?实现一套用户系统,开发一套UI界面,对接自己的大模型或者三方大模型实现对话,搜索,文生图等各种功能。原创 2025-04-25 12:07:38 · 480 阅读 · 0 评论 -
第六章.干货干货!!!Langchain4j开发智能体-如何实现流式输出
前面的章节中我们并没有使用流式输出,不使用流式输出的问题在于内容是一次把内容全部输出,这个过程可能伴随着等待,当大模型响应的数据较多的时候,那么用户需要等待很久才能看到输出结果,所以本篇文章我们使用Langchain4j的流式输出功能。文件结束,本文介绍了如何通过langchin4j提供的reactor依赖让大模型支持流式输出,在企业级开发中流式输出肯定是必备的。如果文章对你有帮助请给个好评吧!!!原创 2025-04-25 10:21:04 · 247 阅读 · 0 评论 -
第五章.干货干货!!!Langchain4j开发智能体-Chain式调用多个大模型
在实际开发中我们通常需要协调多个大模型一起完成工作,如果使用过类似coze的工作流就能明白,很多时候一个任务是由多个环节构成的。对于大模型而言,每次用户提问它不应该去访问所有的tools,这样做很危险,会消耗大量的token,而且会带来一些意想不到的问题。正确的方式应该是根据不同的提问类型调用不同的tools做出相应的处理,如下图:本篇文章我们通过Lanchain4j实现根据用户的不同提问类型,调用不同的tools完成响应的逻辑处理。原创 2025-04-25 10:16:57 · 401 阅读 · 0 评论 -
第四章.干货干货!!!Langchain4j开发智能体-搭建本地RAG知识库
本篇文章介绍了RAG的优势和必要性,通过搭建PGVector本地向量数据库,使用Langchain4j创建RAG知识库的全过程。如果文章对你有帮助请一定三连哦,你的鼓励是我最大的动力!!!原创 2025-04-02 09:34:23 · 1258 阅读 · 5 评论 -
第三章.干货干货!!!Langchain4j开发智能体-让智能体拥有记忆的功能
什么是记忆功能?默认情况下当我们向大模型每次发起的提问都是新的,大模型无法把我们的每次对话形成记忆,也无法根据对话上下文给出人性化的答案。比如:我的第一次提问是“懂王有哪些特点”,然后大模型会给出我懂王的特点结果列表,当我再次提问“这些特点中哪个最惹人争议”的时候,它就不知道我在说什么了,因为大模型已经失去了上一次的提问记忆。所以让智能体(如AI助手、机器人、虚拟角色等)拥有记忆功能不仅能提升交互体验,还能增强其功能性、适应性和长期价值。原创 2025-04-02 09:33:53 · 961 阅读 · 1 评论 -
第二章.干货干货!!!Langchain4j开发智能体-FunctionCalling的使用
本篇文章是接《第一章.干货干货!!!Langchain4j对接AI大模型-开发自己的智能体》,上篇文章介绍了 Langchain4j 和其重要性,然后通过Java程序集成Langchain4j实现大模型对接,分别对接了千问模型以及Ollama本地模型。本篇文章我们来使用Langchain4j 的高级功能 FunctionCalling。Function Calling(函数调用)是大语言模型(LLM)的关键能力,允许AI识别用户请求中的任务,并自动匹配、调用开发者预定义的函数工具(如查询天气、计算数据)。原创 2025-03-28 15:59:06 · 953 阅读 · 8 评论 -
第一章.干货干货!!!Langchain4j对接AI大模型-开发自己的智能体
在人工智能技术迅猛发展的今天,大型语言模型(LLM)已成为推动技术创新的核心引擎。从ChatGPT到Gemini,从Claude到文心一言,这些强大的AI模型正在重塑我们与计算机交互的方式,也为开发者提供了前所未有的机遇。然而,如何将这些前沿技术真正落地到实际应用中,构建出真正智能、实用的AI代理(Agent),仍是许多开发者面临的挑战。Java作为企业级应用开发的主流语言,在全球拥有庞大的开发者生态和丰富的应用场景。原创 2025-03-28 15:58:21 · 1666 阅读 · 1 评论 -
SpringAI+Ollama+DeepSeek本地大模型调用
大型语言模型(LLM)在自然语言处理领域取得了突破性进展,但其庞大的计算资源需求和高昂的调用成本,使得许多开发者望而却步。如何高效、便捷地调用大模型,并将其应用于实际场景,成为了亟待解决的问题。本文将介绍一种创新的解决方案:SpringAI + Ollama + DeepSeek,通过将三者结合,实现本地化部署和调用大模型,为开发者提供更灵活、更经济的LLM应用开发体验。SpringAI 作为Java生态中强大的AI框架,为开发者提供了便捷的API和丰富的工具集,简化了AI模型的集成和应用开发流程。原创 2025-03-10 09:52:43 · 1612 阅读 · 0 评论 -
LLaMA-Factory训练DeepSeek大模型+本地部署
前面我们介绍了基于硅基流动训练私有大模型《10分钟教你微调自己的私有大模型》,该平台有三个不好的点就是可选的模型有限,训练时间需要排队等待耗时长,另外还要 给钱。今天我们换一个平台,使用:魔搭平台 + llamaFactory训练私有模型。平台会赠送服务器时长这样我们就可以不用花钱就可以训练自己的大模型了(学习使用)原创 2025-03-10 09:50:57 · 2947 阅读 · 0 评论 -
10分钟教你微调自己的私有大模型
模型微调是一种在已有预训练模型的基础上,通过使用特定任务的数据集进行进一步训练的技术。这种方法允许模型在保持其在大规模数据集上学到的通用知识的同时,适应特定任务的细微差别。提高性能:微调可以显著提高模型在特定任务上的性能。减少训练时间:相比于从头开始训练模型,微调通常需要较少的训练时间和计算资源。适应特定领域:微调可以帮助模型更好地适应特定领域的数据和任务。使用硅基流动进行模型微调确实是比较方便的,但是也有几点不足之处,一是要给钱,二是耗时长,三是可选的模型比较少。原创 2025-02-27 18:58:12 · 2193 阅读 · 2 评论 -
DeepSeek实现FunctionCalling调用API查询天气
Function Calling(函数调用)是大型语言模型(如 OpenAI 的 GPT 系列)提供的一种能力,允许模型在生成文本的过程中调用外部函数或工具,以完成更复杂的任务。通过 Function Calling,模型可以将自然语言请求转换为结构化的函数调用,从而与外部系统、API 或工具进行交互。想象你有一个智能助手(比如 GPT),它可以回答你的问题,但它本身无法直接执行某些操作,比如查询天气、发送邮件或查询数据库。原创 2025-02-27 18:57:23 · 1808 阅读 · 0 评论 -
CherryStudio+DeepSeek大模型+本地知识库搭建
CherryStudio 是一款集多模型对话、知识库管理、AI 绘画、翻译等功能于一体的全能 AI 助手平台。CherryStudio的高度自定义的设计、强大的扩展能力和友好的用户体验,使其成为专业用户和 AI 爱好者的理想选择。无论是零基础用户还是开发者,都能在 CherryStudio 中找到适合自己的AI功能,提升工作效率和创造力。原创 2025-02-26 09:22:56 · 2369 阅读 · 0 评论 -
Cherry搭载满血的DeepSeek+本地知识库
CherryStudio 是一款集多模型对话、知识库管理、AI 绘画、翻译等功能于一体的全能 AI 助手平台。CherryStudio的高度自定义的设计、强大的扩展能力和友好的用户体验,使其成为专业用户和 AI 爱好者的理想选择。无论是零基础用户还是开发者,都能在 CherryStudio 中找到适合自己的AI功能,提升工作效率和创造力。原创 2025-02-25 18:10:12 · 696 阅读 · 0 评论 -
DeepSeek+Coze发布大模型到Wechat公众号
本篇文章特别有意思,我将利用Coze平台,基于本地知识库快速搭建一个基于DeepSeek大模型的AI智能体,且把AI智能体发布到微信公众号上,打造一个款私人AI小助手。教程不难跟着我的步骤来你也可以成功。原创 2025-02-25 18:08:06 · 1263 阅读 · 0 评论 -
一.AI大模型开发-初识机器学习
本文主要介绍了深度学习基础,包括机器学习、深度学习的概念,机器学习的两种典型任务分类任务和回归任务,机器学习中的基础名词解释以及模型训练的基本流程等。深度学习和机器学习最大的区别是深度学习引入了神经网络,神经网络的构建是通过模拟人类神经元之间的信息传递过程。人体大脑学习过程是通过感觉器官接收外界刺激信息,如视觉、听觉、触觉等,这些信息转化为神经信号传递到大脑,神经信号在神经元之间通过突触进行传导。原创 2025-02-16 23:44:07 · 1374 阅读 · 0 评论 -
Ollama+WebUI+DeepSeek部署自己的本地大模型
使用AI几乎成为互联网工作者必备技能了,DeepSeek的出现把AI再次推向高潮,在本文中,我们将带领大家借助 Ollama、WebUI 和 deepseek 这三个工具,成功搭建属于自己的本地大模型环境。Ollama 作为一款轻量级的大模型运行工具,为模型在本地的运行提供了坚实的基础;WebUI 则为我们打造了直观便捷的用户交互界面,让操作更加简单易懂;而 deepseek 作为一款优秀的大模型,拥有强大的性能和出色的表现。通过将这三者结合起来,我们能够完成从模型部署到实现交互的完整流程。原创 2025-02-11 13:24:27 · 1608 阅读 · 0 评论 -
IDEA+DeepSeek让Java开发起飞
登录DeepSeek官网 : https://www.deepseek.com/ 进入API开放平台,第一次需要注册一个账号。接着我们获取DeepSeek的API对话接口地址,点击左边的:接口文档 进入,找到对话API,把下面的地址保存下来。重新进入IDEA - Setting - 搜索CodeGPT进行配置。进去之后需要创建一个API KEY,然后把APIkey记录保存下来。下面是 code completions 的配置,也就是代码提示。下面是Chat Completions 配置,也就是对话配置。原创 2025-02-07 09:23:51 · 1099 阅读 · 0 评论 -
程序员如何把ChatGPT用到开发中
问:ChatGPT是程序员的好帮手?还是要干掉程序员?原创 2023-04-21 10:25:20 · 23190 阅读 · 0 评论