自适应阈值二值化之最大类间方差法(大津法,OTSU)

最大类间方差法是由日本学者大津(Nobuyuki Otsu)于1979年提出的,是一种自适应的阈值确定的方法,又叫大津法,简称OTSU。它是按图像的灰度特性,将图像分成背景和目标2部分。背景和目标之间的 类间方差越大,说明构成图像的2部分的差别越大,当部分目标错分为背景或部分背景错分为目标都会导致2部分差别变小。因此,使类间方差最大的分割意味着错分概率最小。对于图像I(x,y),前景(即目标)和背景的分割阈值记作Th,属于前景的像素点数占整幅图像的比例记为w1,其平均灰度G1;背景像素点数占整幅图像的比例为w2,其平均灰度为G2。图像的总平均灰度记为G_Ave, 类间方差记为 g

假设图像的背景较暗,并且图像的大小为MXN,图像中像素的灰度值小于阈值的像素个数记作N1,像素灰度大于阈值的像素个数记作N2,则有:

采用遍历的方法得到使类间方差最大的阈值,即为所求。

代码如下:

(C文件)

 1 #include <stdio.h>
 2 #include <math.h>
 3 #include "myOtsu.h"
 4 typedef unsigned char uchar;
 5 int myOtsu(const IplImage *frame) //大津法求阈值   
 6 {  
 7     #define GrayScale 256   //frame灰度级   
 8     int width = frame->width;  
 9     int height = frame->height;  
10     int pixelCount[GrayScale]={0};  
11     float pixelPro[GrayScale]={0};  
12     int i, j, pixelSum = width * height, threshold = 0; 
13     float w0, w1, u0tmp, u1tmp, u0, u1, deltaTmp, deltaMax = 0; 
14     uchar* data = (uchar*)frame->imageData;  
15   
16     //统计每个灰度级中像素的个数   
17     for(i = 0; i < height; i++)  
18     {  
19         for(j = 0;j < width;j++)  
20         {  
21             pixelCount[(int)data[i * width + j]]++;  
22         }  
23     }  
24   
25     //计算每个灰度级的像素数目占整幅图像的比例   
26     for(i = 0; i < GrayScale; i++)  
27     {  
28         pixelPro[i] = (float)pixelCount[i] / pixelSum;  
29     }  
30         
31     for(i = 0; i < GrayScale; i++)//遍历所有从0到255灰度级的阈值分割条件,测试哪一个的类间方差最大  
32     {  
33         w0 = w1 = u0tmp = u1tmp = u0 = u1 = deltaTmp = 0;  
34         for(j = 0; j < GrayScale; j++)  
35         {  
36             if(j <= i)   //背景部分   
37             {  
38                 w0 += pixelPro[j];  
39                 u0tmp += j * pixelPro[j];  
40             }  
41             else   //前景部分   
42             {  
43                 w1 += pixelPro[j];  
44                 u1tmp += j * pixelPro[j];  
45             }  
46         }  
47         u0 = u0tmp / w0;  
48         u1 = u1tmp / w1;  
49         deltaTmp = (float)(w0 *w1* pow((u0 - u1), 2)) ;  
50         if(deltaTmp > deltaMax)  
51         {  
52             deltaMax = deltaTmp;  
53             threshold = i;  
54         }  
55     }  
56     return threshold;  
57 }

(H文件)

1 #ifndef MYOTSU_H_
2 #define MYOTSU_H_
3 typedef struct {
4     int width;
5     int height;
6     unsigned char imageData;
7 }IplImage;
8 extern int myOtsu(const IplImage *frame);
9 #endif /*MYOTSU_H_*/

大家转载请注明出处!谢谢!

在这里要感谢GISPALAB实验室的各位老师和学长学姐的帮助!谢谢~

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值