最短路径-弗洛伊德算法的java实现

弗洛伊德算法介绍

和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。


基本思想

     通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入一个矩阵S,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离。

     假设图G中顶点个数为N,则需要对矩阵S进行N次更新。初始时,矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞。 接下来开始,对矩阵S进行N次更新。第1次更新时,如果"a[i][j]的距离" > "a[i][0]+a[0][j]"(a[i][0]+a[0][j]表示"i与j之间经过第1个顶点的距离"),则更新a[i][j]为"a[i][0]+a[0][j]"。 同理,第k次更新时,如果"a[i][j]的距离" > "a[i][k]+a[k][j]",则更新a[i][j]为"a[i][k]+a[k][j]"。更新N次之后,操作完成!

     单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。

弗洛伊德算法图解

以上图G4为例,来对弗洛伊德进行算法演示。

初始状态:S是记录各个顶点间最短路径的矩阵。 
第1步:初始化S。 
    矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞。实际上,就是将图的原始矩阵复制到S中。 
    注:a[i][j]表示矩阵S中顶点i(第i个顶点)到顶点j(第j个顶点)的距离。

第2步:以顶点A(第1个顶点)为中介点,若a[i][j] > a[i][0]+a[0][j],则设置a[i][j]=a[i][0]+a[0][j]。 
    以顶点a[1]6,上一步操作之后,a[1][6]=∞;而将A作为中介点时,(B,A)=12,(A,G)=14,因此B和G之间的距离可以更新为26。

同理,依次将顶点B,C,D,E,F,G作为中介点,并更新a[i][j]的大小。

弗洛伊德算法的代码说明

以"邻接矩阵"为例对弗洛伊德算法进行说明,对于"邻接表"实现的图在后面会给出相应的源码。

1. 基本定义

复制代码
public class MatrixUDG {

    private int mEdgNum;        // 边的数量
    private char[] mVexs;       // 顶点集合
    private int[][] mMatrix;    // 邻接矩阵
    private static final int INF = Integer.MAX_VALUE;   // 最大值

    ...
}
复制代码

MatrixUDG是邻接矩阵对应的结构体。mVexs用于保存顶点,mEdgNum用于保存边数,mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示"顶点i(即mVexs[i])"和"顶点j(即mVexs[j])"是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。


package graph;

import java.util.Arrays;

public class Prim {
	 
	public static void main(String[] args) {  
		int max = Integer.MAX_VALUE-10000;  
        int graph[][] = {  
                {max,max,10,max,30,100},  
                {max,max,5,max,max,max},  
                {max,max,max,50,max,max},  
                {max,max,max,max,max,10},  
                {max,max,max,20,max,60},  
                {max,max,max,max,max,max},  
            };  
        弗洛伊德(graph); 
    }  
	public static void 弗洛伊德(int[][] graph){
		//p[0][1] = 3表示节点0到节点1的最短路径经过了3,即0->3->1
		int[][] path = new int[6][6];
		//初始化path,初始状态path[i][j] =j,表示i直接到j不经过其他点
		//此时graph保存的也是i直接到j的路径长度,MAX表示此路不通
		for(int i=0;i<6;i++){
			for(int j=0;j<6;j++){
				path[i][j] = j;
			}
		}
		for(int i=0;i<6;i++){
			//start为路径起点
			for(int start=0;start<6;start++){
				//end为路径终点
				for(int end=0;end<6;end++){
					//防止MAX+一个数 导致溢出
					if(graph[start][i]==Integer.MAX_VALUE-10000||graph[i][end]==Integer.MAX_VALUE-10000){
						continue;
					}
					//如果以i的路过点的路径比当前所存储的最短路径短的话
					//则更新此路径为最短路径,并在path中标注出当前最短路径是经过i达到的
					if(graph[start][end] > graph[start][i]+graph[i][end]){
						graph[start][end] = graph[start][i]+graph[i][end];
						path[start][end] = i;
					}
				}
			}
		}
		System.out.println();
	}
	
}


  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: Dijkstra算法是一种用于解决单源最短路径问题的算法。它的基本思想是从起点开始,逐步扩展到其他节点,每次选择当前距离起点最近的节点,并更新与该节点相邻的节点的距离。通过这种方式,可以找到起点到其他节点的最短路径。Dijkstra算法的时间复杂度为O(n^2),但是可以通过使用堆优化来将其优化到O(nlogn)。 ### 回答2: Dijkstra算法是一种解决单源最短路径问题的贪心算法,其思想是利用“松弛”操作来不断更新当前点到源点的最短距离,但前提是所有边的权重非负。如果有负权边,则需要使用Bellman-Ford算法。 首先,我们需要定义一个数组dis数组,用于存储源点s到各个点的最短距离。dis[s]初始为0,其他点初始为无限大。接着,我们需要维护一个集合S,表示已经求出最短路径的点的集合。将源点s加入集合S中。 对于每个未加入S的点v,我们通过选择其它点到源点s的最短路径中的一个点u,然后将dis[v]更新为dis[u] + w(u,v),其中w(u,v)表示边(u,v)的权重。具体地,这个操作称为“松弛”操作。 在松弛操作中,我们需要比较dis[u] + w(u,v)和dis[v]的大小,如果前者更小,则更新dis[v]的值为dis[u] + w(u,v)。 重复执行以上操作,直到所有的点都加入到集合S中。最后dis数组中存储的就是源点s到所有点的最短距离。 Dijkstra算法可以用堆优化,时间复杂度为O(mlogn),其中n表示图中的点数,m表示边数。Dijkstra算法也可以应用于稠密图,时间复杂度为O(n^2)。 总之,Dijkstra算法是一种经典的求解单源最短路径问题的算法,其实现简单,效率高,被广泛应用于路由算法和图像处理等领域。 ### 回答3: Dijkstra算法是一种在加权有向图中寻找从源节点到其他节点的最短路径的贪心算法。该算法基于其它路径加权节点的已知最短路径去更新更长路径的信息直到找到从源节点到目标节点的最短路径。在整个计算过程中,Dijkstra算法需要维护一个待处理节点集合和一个距离源节点的最短路径数组。 算法的具体实现如下: 1. 初始化源节点及其距离为0,其他节点的距离为无穷大。 2. 将源节点加入到待处理节点集合中。 3. 对于源节点的所有相邻节点,更新它们距离源节点的最短路径。如果当前路径小于之前已知的最短路径,则更新最短路径数组。 4. 遍历待处理节点集合中除源节点外的节点,选择距离最近的节点作为当前节点,并将它从待处理机集合中移除。 5. 对于当前节点的所有相邻节点,更新它们距离源节点的最短路径。如果当前路径小于之前已知的最短路径,则更新最短路径数组。 6. 重复步骤4和5,直到待处理节点集合为空或者目标节点已经被遍历。 Dijkstra算法的时间复杂度为O(n^2),其中n为节点数,由于它是贪心算法,只能处理非负权重的图,否则可能会陷入死循环。但是,Dijkstra算法是单源最短路径问题的最优解,因此在处理小规模的图时效果很好。在处理大规模图时,需要使用其他高效的算法,如A*算法、Bellman-Ford算法等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值