想要分析销售数据下滑原因?只需使用FineBI这样做!

销售数据分析对于企业的成功运营和战略规划至关重要。销售数据提供了对市场动态、消费者行为和购买模式的深入了解。通过分析销售数据,企业可以识别哪些销售策略最有效,哪些需要改进,这有助于企业调整其销售方法,提高转化率和客户获取效率。忽略这一重要环节可能会对企业造成长远的负面影响。

因此,企业应当重视并充分利用销售数据分析,以确保在激烈的市场竞争中保持优势。通过利用商业智能(BI)工具,如FineBI等,企业可以更有效地进行销售数据分析,从而做出更明智的决策。

然而,如何进行销售数据分析?如何利用BI工具快速地分析销售数据?本文就将使用FineBI数据分析工具,对某服装公司销售数据进行分析,为您讲解销售数据分析的思路,并根据分析结果提出有针对性的建议,希望能带给您参考与启示。

文章中提到的BI数据分析工具分享给大家——
https://s.fanruan.com/7lh3w
零基础快速上手,内置多种数据分析模板模型,实现高效数据自助分析!

一、案例背景与分析思路

某服装公司正面临着激烈的市场竞争和不断变化的消费者需求,该公司在佛山某门店3月的销售额下滑,为了进一步提升公司的整体业绩,需要对销售额不达标的原因进行分析。

本案例选取该店铺3月的销售数据,使用帕累托分析、四象限分析、RFM模型以及关联规则分析从商品和顾客角度分析销售额下滑背后的原因并提出整改建议。

制作过程,销售数据分析,FineBI数据分析工具

二、销售分析过程

1.  帕累托分析

帕累托原则是指在很多情况下,大约80%的效果来自于20%的原因,这个原则在经济学、管理学等多个领域都有广泛的应用。拓展到产品销售的场景就是80%的销售额是20%的产品贡献的。这个比例并不是固定的,但通常用来描述一种不平衡的关系,即少数原因或输入往往会产生大部分效果或输出。

应用该方法进行分析是为了抓住重点产品,从众多产品中抓取有限数量以提升门店的整体业绩。

(1)分析结果

如下图所示,运动鞋、夹克、卫衣、牛仔裤和短袖T恤这五大类产品占据了销售主导地位,贡献了超过80%的销售额,而其他产品仅占不足20%。这一现象表明,店内产品销售存在显著的不均衡,主要产品与其他产品之间的销售表现形成了鲜明的对比。

原因是运动鞋、夹克、卫衣、牛仔裤和短袖T恤可能是市场上需求量较大的商品,它们满足了消费者的基本需求或符合当前的时尚趋势,因此销售表现更为突出。某些产品如短袖T恤可能因为适应当前季节而销量较高,而长袖和外套等反季节产品销量相对较低。

累计销售额表,销售数据分析,FineBI数据分析工具

帕累托图,销售数据分析,FineBI数据分析工具

(2)建议

基于上述分析,店铺将管理重心放在运动鞋、夹克、卫衣、牛仔裤和短袖T恤这些主要产品上,确保它们得到有效的展示。鉴于鞋类产品当前的销售目标完成率不理想,建议加强鞋类销售的管理,并确保库存充足。此外,持续监测市场趋势和款式更新对于提升边缘产品市场潜力同样至关重要。

2、  四象限分析

四象限分析通过将事物或问题根据两个关键维度进行分类,帮助人们识别优先级和做出决策。在四象限分析中,X轴和Y轴代表了两个不同的评价标准或属性。这两个维度可以是任何相关因素。根据这两个维度,可以创建四个象限,每个象限代表了不同的策略或行动方案。

利用四象限分析法可以使门店使用两个维度分析业务、产品的表现,协助其更好的进行资源分配、问题诊断。

(1)分析结果

如下图所示,运动鞋、夹克、卫衣、牛仔裤和短袖T恤等位于第一象限,成为了门店的明星产品,而其他产品都是瘦狗产品。这种不平衡的产品结构表明门店缺少稳定收益的金牛产品。这种现象可能是由于产品研发和设计团队的资源分配不足,以及市场部门人员配备不充分和流行趋势更新滞后等因素所导致的。

四象限分析图,销售数据分析,FineBI数据分析工具

(2)建议
  • 针对明星产品,要以提高门店的相对市场占有率为目标,甚至不吝放弃短期收益,以长期收益为目标。四象限分析和帕累托分析的结果和结论一致,验证了作品数据分析结果的准确性。
  • 针对剩余瘦狗产品,建议门店进行适当的清理和撤销某些产品,减轻负担,以便将有限的资源用于收益较高的业务。一个企业必须对其品牌业务进行收放与缩减的调整,以使其投资组合趋于合理。
  • 针对缺少短期获利(提高业绩)的金牛产品。加大研发、设计投入,时刻关注市场流行因素,做好当季流行款式的研发。此举目的主要是为了获得短期收益,在短期内尽可能地得到最大限度的现金收入,以便更容易完成公司的绩效考核目标。

3、关联规则分析

关联规则分析是一种数据挖掘技术,用于在大量数据集中发现变量之间的有趣关系。这种分析的目的是识别在数据中频繁出现的模式、关联或者相关性。在零售业和市场分析中,关联规则分析经常被用来发现不同产品之间的购买关系,即一个产品(如品牌A的牛奶)与另一个产品(如品牌B的面包)之间的关联性。

使用该方法进行分析旨在从交易数据中,揭示了各种商品间的潜在关联性,挖掘顾客的购买潜力,调整产品的陈列布局,提高销售连带率,从而促进销售的提升。

(1)分析结果

如下图所示,在STY1267这款夹克的所有购买顾客中,有59%的顾客也购买了STY1288这款牛仔裤,两者之间具有较强的关联性;除了STY1267和STY1288两个产品相关联的规则外,其他产品的销售关联规则的支持度普遍不高。可见该门店产品的连带销售情况并不理想,可能是因为连带营销策略不足、不太重视产品的陈列、模特搭配较少及店员服务水平不高等因素。

关联规则分析,销售数据分析下,FineBI数据分析工具

(2)建议

通过上述分析,想要提高连带销售效果,在库存充足并且空间允许的情况下,重视产品的陈列,同时可在店铺橱窗以模特搭配出样展示,促进连带销售,产出更多的业绩,促进考核目标的达成。另外,应该重视买一送一等连带销售的促销活动,以及提高门店成员的服务水平让客户产生信任等。

4、RFM模型

RFM模型是一种营销分析工具,用于通过历史交易数据对客户进行细分和评估。

RFM代表以下三个维度:

  • R – 最近一次消费:客户最近一次购买的时间。时间越短,意味着客户对品牌的兴趣和忠诚度较高。
  • F – 消费频率:客户在特定时间内购买的次数。频率越高,表明可能是更有价值的长期客户。
  • M – 消费金额:客户在一定时间内为企业带来的总收入。消费金额越高,表明客户的价值越大。

使用RFM模型意在通过该分析方法的结果,将客户分为不同的群体,对店铺个性化的沟通和服务提供依据。

(1)分析结果

如下图所示,该门店的重要价值客户和重要保持客户,加起来不到0.4%。但重要发展客户和重要挽留客户占比较多,应该做好发展和挽留工作。还可以从下图发现这个问题,即重要价值客户和重要保持客户占比太少,客户复购情况不太理想,客户“流失”情况较为严重。可能是因为门店处在中心地段,人流量非常大,故“一次性”游客较多;同时,因为客流量大的原因,该公司(门店)并不太重视会员的维护。

RFM分析图,销售数据分析,FineBI数据分析工具

(2)建议

“吸引一个最近个月前才上门的顾客购买,比吸引一个一年多以前来过的顾客要容易得多”。想要门店能够可持续发展,公司应该有居安思危的策略,要重视会员管理,门店应该与顾客建立长期的关系,而不仅是卖东西会让顾客持续保持往来,要定期进行会员活动,并赢得他们的忠诚度。(哪天人流量没那么多了也不一定,现在门店只是吃了地理位置的红利而已!)

三、  总结

通过对门店销售数据的深入分析,我们揭示了关键产品对业绩的重要贡献以及提升客户忠诚度和产品结构优化的必要性。在这个过程中,FineBI作为强大的数据分析工具,发挥了至关重要的作用。它不仅帮助我们快速识别和聚焦于核心产品,还通过其直观的可视化和灵活的数据挖掘功能,揭示了客户购买行为的深层次模式。FineBI数据分析工具的应用使得我们能够精确制定营销策略,优化库存管理,并有效提升连带销售。通过FineBI的高效分析能力,门店能够更加精准地满足市场需求,提高销售业绩,并在激烈的市场竞争中保持领先地位。

文章中提到的BI数据分析工具分享给大家——
https://s.fanruan.com/7lh3w
零基础快速上手,内置多种数据分析模板模型,实现高效数据自助分析!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值