十年来,我国数字经济取得了举世瞩目的发展成就,数字产业化与产业数字化正在被大力推动,“云大物智移”正在成为企业当前转型的必要方向,数据俨然成为企业不可或缺的生产要素。
然而,制造业的数据建设情况并不乐观。帆软数据应用研究院的调研数据显示,仅有 3.42% 的制造企业在内部形成了良好的数据应用氛围,企业自上而下的管理都依靠数据支撑。因此,在数字经济的大背景下,制造业企业亟需进行数字化转型。而指标数据体系的建设,正是通过数据驱动的决策的关键一环,在数字化转型的初期,企业必须打牢基础,保证体系的专业性和完整性。
更多详细内容,推荐下载《指标体系建设方案》:
https://s.fanruan.com/5zkhn
分享行业真实的数字化转型案例,提供完整数字化解决方案!
一、数据驱动企业发展,指标数据体系建设势在必行
1、数据逐步成为企业核心资产
在如今这个大数据时代,越来越多的企业开始关注数据在企业中的价值,希望通过对数据的挖掘与分析,驱动更专业合理的决策。企业的数字化转型一般可以分为三个阶段:业务数据化阶段、数据智能化阶段、数据业务化阶段,不同阶段有不同阶段的发展目标,也对数据有着不同程度的建设与利用,具体如下:
1)业务数据化阶段——数据反映业务
梳理、重构企业业务流程,建设业务系统,线下流程线上化管理,实现业务数据化,通过业务系统的数据流动反应业务现状。
具体地,这个阶段企业需要整合业务数据(如:客户、营销、财务等),累积历史,通过报表、查询、仪表盘等形式,对业务历史数据进行统计分析,进而反映企业一段历史周期内的经营情况。注重思考“业务已经发生了什么,为什么会发生”。
2)数据智能化阶段——数据辅助业务
随着信息化发展,企业沉淀了大量历史数据,企业系统通过可视化方式更好展示数据形态和探索研究,辅助日常运营工作。
具体地,这个阶段企业需要建立数据科学团队,利用机器学习、深度学习等技术针对海量数据,进行探索、研究分析,为新出现的业务问题寻找答案,或从数据中发现新的业务洞察。注重思考“业务将要发生什么”。
3)数据业务化阶段——数据驱动业务
企业通过信息化建设不断发现内部数据隐藏价值,基于新的业务洞察优化或重构业务流程,建立实时、自助、可控的决策机制。
具体地,这个阶段企业需要监控业务流程、实时捕获业务的发生,反映当前企业生产经营情况。进一步根据对未来的预测,以及对当前生产经营的监测,自动化、智能化驱动业务方向。注重思考“业务当前在发生什么,如何驱动业务发生”。
2、数据价值引领下指标体系的拆解要求
指标体系的建设,是企业实现数据驱动业务必不可少的一个环节。所谓指标,就是用数据表示的,衡量事物发展程度的方法,被广泛用于衡量目标。例如:收入、利润、ROI等。在企业的实际运营过程中,一条业务线通常会涉及诸多部门及岗位,大家关心的点不同,但又需要统一目标,向着同一个方向前进,这就需要我们事先确定好日常跟踪的数据指标,都是有统有分、有层次,能落到不同岗位职务上的。这些有统有分的指标就是指标体系,拆解获得它的过程就是搭建指标体系的过程。
企业要做到用数据驱动业务,就需要搭建与发展战略相关的指标体系,凸显数据分析的价值,具体拆解思路可以参照如下几点:
1)企业价值驱动
首先需要思考如何创造企业价值,比如可以通过EVM模型分析企业的各方面的经济价值,也可以思考社会责任、社会价值等其他类型的价值;企业的价值是指标体系的顶层设计参考,是指标体系与企业战略相关联的重要保证;
2)分析价值动因
其次需要分析是哪些要素影响了企业价值,比如成本管控可以提高企业利润,收入增长可以提高员工价值等等;这个层级涉及的指标往往被称为核心指标,通常与整体业务的年度目标一致,要服务于业务发展需要,反映整个业务的走向。
3)关键管理举措
然后需要根据价值动因设置对应的管理举措,以提升顶层的企业价值,比如业务拓展、精细营销、产品管理等举措都可以实现收入增长,进而提升员工价值;这一级指标对应的是支撑核心目标完成的关键动作,通常要完成核心目标要从多个业务角度考虑,所以这一层的指标就是用来衡量这多个重点业务的业务指标。
4)落地实施步骤
最后要确立各种管理举措的具体落地步骤,比如采用相关工具和方法论、进行需求差异分析、问题分析等等。业务指标能否完成,最终还是要看各个动作下的事项执行的怎么样,那就是要和最基础的岗位、业务关联起来。所以这一级指标是由业务指标拆解而来,一般叫做操作指标,会落实到基础岗位和具体的执行人员,可以衡量基础业务人员日常工作的效果。
二、帆软大制造指标数据体系建设方案
1、指标体系相关概念解释
指标:指标是衡量目标的方法,预期中企业业务板块要达到的指数、规格、标准,一般用数值表示,如:销售收入、毛利成本、人员效率、设备OEE等;
分析维度:通过不同的角度、不同的方面对指标进行分析、拆解,与指标结合有特定范围的意义,如:时间维度(年、月、日)、地区维度(北京、上海、广州);
指标主题:根据部门管理职能和业务覆盖范围,将指标数据项进行结构化归类,划分一二三级主题,作为指标建设和应用的重要依据,如:一级主题:风险管理;二级主题:市场风险;三级主题:一般市场风险资本要求;
指标与报表关系:指标是存在于报表中衡量目标的方法,指标和维度组合成了报表,通过报表分析梳理出指标,如:销售收入报表输出指标:销售收入、销售数量、销售单价。
2、帆软大制造指标数据体系优化目标
当前,企业指标数据体系建设存在指标口径不统一、指标体系不完善、指标问题难追溯等管理与应用问题,制约着企业用数据驱动决策的效率和质量。对于这些问题,我们需要对指标体系做出针对性的优化:
- 扩展体系,丰富内涵:在现有结果展示指标的基础上,结合企业战略目标和信息化发展规划,进一步优化提升指标体系框架;
- 采用多元应用方法,便于操作:采取结果展示、过程跟踪、指标分析评价等方式让指标应用更加丰富多元;
- 科学衡量、客观准确:以引入业内指标最佳实践、设立内部运营对标指标库等手段,指标标准更为客观准确。
按照这样的优化思路,我们确定了以下的大制造指标数据体系建设目标:
1)对指标进行集中管理
将分散在不同系统的各类指标集中管理,统一的标准进行约束,清晰展现用户指标一览表及各指标的统计方法、数据来源、统计口径等信息,整个指标体系一览在目。
2)让指标口径一致
统一的指标口径以达到减少沟通成本,提高沟通效率;比如指标数据的名称相同,但统计口径、计算方法却不同;指标数据的计算方式相同,但名称却各异等此类问题将得以避免。
3)使指标问题易于追溯
大多数指标都要经过多重计算和复杂的加工过程,方便查看指标定义,并可快速定位到指标的责任部门。
4)保证数据质量
使指标数据的一致性、完整性、准确性和可追溯性得到保证,避免出现问题时各部门间相互推诿的情况。
5)促进指标可视化
随时查看指标数据,了解指标趋势,提供可视化的方式自由查看指标,并可多种维度对指标进行分析。
3、帆软大制造指标数据体系建设价值
我们知道,指标体系可以应用于企业日常活动中多类场景:
- 会议支撑类:公司季度经营分析会、公司月度项目进度会……
- 报告推送类:日报指标(日生产产量、设备效率)、周报指标、月报指标……
- 分析类:敏感因子试算分析(调售价、调成本、调人员、判断成本影响关键因子)、市场趋势分析(市占率分析、市场未来容量预测、行业市场情况对比、产品能力对比)、项目总结复盘……
- 看板类
- 预警触发类
- 绩效考核类
所以指标体系的建设,对于企业中各类业务的提升有重要价值。在帆软大制造指标数据体系的优化目标下,我们能够实现
- 指标选取科学化:指标筛选标准工具化、模型化;
- 指标管控精细化:增加多个指标管理维度,如指标名称、类型、来源、适用行业等等;
- 指标范围全面化:结果指标与过程指标结合;
最终,由优化前个体专家的经验式管理,转变为优化后知识体系化下的科学化管理,能够让指标有效反映业务成果,支持业务预测,进而驱动企业更加合理的决策。
4、帆软大制造指标数据体系建设步骤
指标体系建设应该注重企业战略目标和业务发展过程的全局性,充分考虑国家标准、行业标准,建设过程中应该满足以下要求:
- 完整性要求:指标的信息应避免缺项,保证信息完整
- 唯一性要求:保证指标选取全面,指标直接避免重复
- 准确性要求:每项指标都必须体现业务管理需求,科学反映评价对象某方面信息
- 规范性要求:对数据指标的分类和定义要求规范,各个业务流程、层级按照数据规范开展工作
在遵循这些要求的前提下,我们开始搭建指标体系。
1)梳理量化指标
通过自上而下的价值树分解(Top-down)与自下而上的经营分析指标梳理(Bottom-up)形成经营指标库。
a. 自上而下:基于业务分级梳理指标
针对企业决策层和管理层,基于客户顶级视角以企业业务核心目标起点,根据业务模式和业务流程等自上而下纵向深入理解业务,层层递进分级梳理关键业务实现指标量化。
- 第一级:企业级指标——面向高层管理者
一般称为核心指标,和大的业务流程紧密联系,通常用于高层管理者对企业整体运营情况的监控;是关键的结果导向指标,直接和整个企业的业务目标关联。
- 第二级:业务板块指标——面向中层管理者
一般称为业务指标,和公司业务目标和业务流程紧密联系,通常用于对公司运营情况的监控;可以向上汇总到企业级KPI。
- 第三级:运营层指标——面向业务执行人员
一般称为操作/过程指标,和各作业区的目标紧密联系,通常用于对生产流程和技术工艺的监控;关注运营层面和具体的操作环节。
方法一-价值树分解:我们可以运用价值树分解价值驱动因素,逐层进行指标的拆解,保障指标体系的完整性和可落地性。
- 第一步:明确战略指标
从整体战略目标出发,根据价值树框架,识别每一关键驱动因素的关键指标,找到唯一关键指标。
- 第二步:价值树搭建
价值树将公司的总体战略分解为影响它的“关键因素”,即价值驱动因素。
- 第三步:价值驱动因素优先级
根据对公司战略的影响,对价值驱动因素进行排序。
将价值树和价值驱动因素优先级排序相结合,可以帮助行方设计完整的指标体系,并保障在达到战略目标的同时,满足经营管理的需求。
方法二-业务分解:我们可以从4个方面自上而下纵向深入理解业务,并基于4类业务事实,量化经营管理过程和结果,分级依次转化为对应的指标:
- 业务目标——由核心指标量化
例:完成年度经营业绩可以用销售收入、销售毛利、销售费用等核心指标来量化
- 业务模式——由业务指标量化
例:营销LTC业务流程可以由新增客户数、平均成本、线索转化等业务指标来量化
- 可控因素——由过程指标衡量
例:资源投放、拜访提升、转化加快等可控因素可以用客户转化、签约转化率、拜访次数等过程指标来量化。
- 不可控因素——由监控指标衡量
例:客户价值、客户购买力等不可靠因素可以用客户数量、客户预算、原材料价格等监控指标来衡量。
b. 自下而上:基于业务流程梳理指标
以销售业务为例,先梳理销售流程,从四个角度分析关键项(卖给谁、卖什么、怎么卖、怎么服务分别对应客户、产品、渠道和服务),然后根据关键项获得关键过程,再分别对关键过程基于关注点的五大因素量化指标。
2)指标业务关联,建立使用方法
同样以销售业务为例,以完成一个销售目标为核心指标,通过自上而下和自下而上结合的方式梳理量化指标,并把指标关联分级展示,得到了指标关联体系图。
然后我们需要梳理该指标体系的使用指南。我们的目标是完成一个亿业绩,其核心指标为销售毛利2000万,销售毛利率20%。我们将当前的数据与核心指标对比,假设发现销售毛利同比降低5%;与目标比偏差8%;销售毛利率同比增加3%;与行业市场比偏差5%。
第一层,首先要对毛利和毛利率进行公式拆解:销售毛利=销售收入-销售成本;毛利率=销售毛利/销售收入,基于拆解的指标进行初步分析。
第二层,要从业务角度进行分析和拆解,毛利指标绝对值下降,毛利率却反而在上升,说明营销业务过程中,销售成本控制得比较好,但同时销售收入也可能存在下降趋势。可以把销售收入影响因素拆解为可控因素和不可控因素,在这里也就是销售因素和市场因素。
第三层,要对各因素进行拆解,市场因素可以拆解为新客预算,销售因素可以拆解为商机流失率、拜访次数、新客单价。
我们发现,销售收入同比减少了5%,拆解出来的新客预算同比减少了5%,上级流失率增加了5%,拜访次数减少了2%,新客单价增加了1%。进而提出问题,主流市场客户预算情况如何、商机流失原因及占比、转化率提升空间及措施、客户拜访成功率如何……接下来,就可以针对这些问题进行专题分析,尝试验证问题并寻找根因。
最后,根据对数据的分析输出业务策略,比如产品端要研发新的低成本高价值产品迭代,市场端要举办专题市场交流活动,拓展高预算客户数量,销售端要围绕低预算、高价值客户构建销售策略。在这个基础上,继续观测指标变化,进行阶段复盘,总结新的提升,明确新的现状,发现新的问题,用指标来促进业务的不断迭代优化。
3)建立指标体系附件文档
指标文档也可以理解为指标字典,需要包括指标的分析主题、场景、维度、方法、价值等等。简单地说,其实就是把公司常用的一些指标,通过有组织、有秩序的进行整理,,形成公司内各个业务部门均统一认同的标准化数据体系。就像字典一样,对哪个指标有疑问,就去指标字典中查一查,对齐口径。
好的指标体系附件文档可以降低沟通成本,提升沟通效率;打破信息隔阂,减少公司重复性建设;是公司数据化建设的基础、数据平台搭建的基础。
4)通过平衡积分卡搭建自上而下的指标梳理体系
- 财务方面
企业在财务层面想要降本增效,实现价值最大化,对应需要关注的指标就是客户价值、收入、毛利、资产利用率、成本、人均产值等;
- 客户方面
企业要实现财务目标,需要满足客户的需求,这类需求设计到质量、价格、时间、功能、生态伙伴、品牌文化方面的指标
- 内部流程方面
为了实现财务目标,满足客户需求,我们需要不断优化内部流程,我们可以关注营销、供应链、研发方面的相关指标
- 学习和成长方面
为了实现企业愿景,企业在内部的学习与成长方面需要做出一些变革和展望,需要关注人力资本、信息资本、组织资本相关的一些指标。
5)战略地图与指标落地
通过平衡积分卡模式搭建指标地图,对于地图中四个不同方面,既要在流程上进行指标的纵向梳理,也要明确每个流程对应的责任人,落实指标到人。以下是基于战略平衡积分卡模式的指标落地架构图:
到这里,指标体系的建设算是基本结束了。但是,在实际业务中,有一些特殊的指标是指标建设人员所想不到的,这时候就需要自下而上地再对这些指标进行收集、解析、归类和整合,保证指标体系的完整性,具体方法如下:
- 指标收集:向各业务部门收集经营指标清单,按指标类型对指标进行分类。
- 指标解析:梳理指标之间的关联关系,逐层拆解后得到指标树及指标图谱。
- 指标整合和归类:定义指标业务维度和技术维度,梳理指标与维度的对应关系,形成指标库。
具体实践上,可以分为业务调研访谈、梳理业务条线和场景、梳理业务流程、基于底表识别原子指标、组合提炼KPI以明确维度、拆解影响KPI关联业务事件、拆解影响KPI关联业务指标及下钻逻辑这七个步骤。
三、基于已有指标体系搭建企业可视化管理大屏
指标体系搭建完成后,企业可借助 FineReport 的强大功能,轻松打造指标可视化大屏或动态管理看板。FineReport 凭借其卓越的数据整合与可视化能力,能够为企业提供多维度、全方位的数据展示,将复杂的指标数据以直观、清晰的方式呈现于大屏之上,为企业的战略决策提供有力支撑。同时,FineReport 还支持灵活的设计与实时数据更新,确保企业能够迅速应对业务变化。
以下是一些利用 FineReport 搭建的数据大屏 Demo 示例,充分展示了其在数据整合与可视化领域的领先地位。
订单管理大屏
设备效率分析大屏
设备状态监控大屏
企业经营数据大屏
企业综合管理大屏
四、总结
通过帆软的大制造指标数据体系,制造业企业可以通过数据追溯问题根源,提高数据驱动决策的效率和质量。截至目前,帆软已与众多制造业企业达成合作,致力于通过深入了解行业特点和企业需求,结合行业最佳实践与数据分析经验,为制造业企业量身定制科学、系统且实用的指标体系,帮助企业精准评估运营成效、优化管理决策,从而在激烈的市场竞争中脱颖而出。
若想了解更多关于制造业指标体系建设的解决方案,请您与帆软取得联系,快速获得帆软为您提供的方案建议、免费的产品试用和同行业标杆案例学习参考。
更多详细内容,推荐下载《指标体系建设方案》:
https://s.fanruan.com/5zkhn
分享行业真实的数字化转型案例,提供完整数字化解决方案!