Hinton关于RBM的代码注解之(一)rbm.m

这个是Hinton关于RBM的pre-training的代码。

源代码网址:http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html


%%%%%%%%%%%%%%rbm.m

epsilonw      = 0.1;   % Learning rate for weights 
epsilonvb     = 0.1;   % Learning rate for biases of visible units 
epsilonhb     = 0.1;   % Learning rate for biases of hidden units 
weightcost  = 0.0002;   
initialmomentum  = 0.5;          %累积冲量
finalmomentum    = 0.9;


[numcases numdims numbatches]=size(batchdata);


if restart ==1,
  restart=0;
  epoch=1;


% Initializing symmetric weights and biases. 
  vishid     = 0.1*randn(numdims, numhid); %初始化可见层到隐含层的权重矩阵
  hidbiases  = zeros(1,numhid);            %初始化隐含层的偏差
  visbiases  = zeros(1,numdims);           %初始化可见层的偏差


  poshidprobs = zeros(numcases,numhid);    %初始化由data得到的隐含层的概率
  neghidprobs = zeros(numcases,numhid);    %初始化重构后的data得到的隐含层的概率
  posprods    = zeros(numdims,numhid);     %用于更新权重的矩阵.这个是由datad得到的 X'*h,即是<x1,h1>
  negprods    = zeros(numdims,numhid);     %用于更新权重的矩阵 这个是由重构data得到的X2'*h2,即是<x2,h2>
  vishidinc  = zeros(numdims,numhid);      %权重更新的增量
  hidbiasinc = zeros(1,numhid);            %隐含层的偏差的增量
  visbiasinc = zeros(1,numdims);           %可见层偏差的增量
  batchposhidprobs=zeros(numcases,numhid,numbatches);      %将新得到的隐含层作为下一层的可见层
end


for epoch = epoch:maxepoch,                  %开始迭代,进行pre-training
 fprintf(1,'epoch %d\r',epoch); 
 errsum=0;                                   % 误差
 for batch = 1:numbatches,
 fprintf(1,'epoch %d batch %d\r',epoch,batch); 


%%%%%%%%% START POSITIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  data = batchdata(:,:,batch);               %提取每一批次的数据来进行预训练
  poshidprobs = 1./(1 + exp(-data*vishid - repmat(hidbiases,numcases,1)));  %计算隐含层为1的概率   
  batchposhidprobs(:,:,batch)=poshidprobs;                                  %将隐含层的结果作为下一层RBM的可见层
  posprods    = data' * poshidprobs;                                        %用于计算更新权重的矩阵.这个是由datad得到的 X'*h,即是<x1,h1>  
  poshidact   = sum(poshidprobs);                                           %用于计算更新隐含层增量,sum是所有的numcase得到的每个隐含层单元的概率和
  posvisact = sum(data);                                                    %用于计算更新可见层的增量


%%%%%%%%% END OF POSITIVE PHASE  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  poshidstates = poshidprobs > rand(numcases,numhid);                       %大于随机概率的置1,小于随机概率的置0


%%%%%%%%% START NEGATIVE PHASE  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %对比分歧方法,使用一步吉布斯采样
 %对原来的data进行重构
  negdata = 1./(1 + exp(-poshidstates*vishid' - repmat(visbiases,numcases,1)));    %重构后的data
  neghidprobs = 1./(1 + exp(-negdata*vishid - repmat(hidbiases,numcases,1)));      %由重构后的data驱动的隐含层
  negprods  = negdata'*neghidprobs;                                                %用于计算更新权重的矩阵.这个是由data重构后得到的 X'*h,即是<x1,h                 
  neghidact = sum(neghidprobs);                                                    %用于计算更新隐含层增量,这个是由data重构后得到的隐含层,
  negvisact = sum(negdata); 


%%%%%%%%% END OF NEGATIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  err= sum(sum( (data-negdata).^2 ));           %该批错误
  errsum = err + errsum;                        %总的错误


   if epoch>5,                                 %累积冲量
     momentum=finalmomentum;                   %若大于5次,冲量为0.9
   else
     momentum=initialmomentum;                 %若小于5次,冲量为0.5
   end;


%%%%%%%%% UPDATE WEIGHTS AND BIASES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%下面开始更新权重,具体的更新方程,可查阅Hinton关于RBM的文献,采用的是CD方法


%先计算增量
    vishidinc = momentum*vishidinc + ...
                epsilonw*( (posprods-negprods)/numcases - weightcost*vishid);
    visbiasinc = momentum*visbiasinc + (epsilonvb/numcases)*(posvisact-negvisact);
    hidbiasinc = momentum*hidbiasinc + (epsilonhb/numcases)*(poshidact-neghidact);
%再计算更新后的参数
    vishid = vishid + vishidinc;
    visbiases = visbiases + visbiasinc;
    hidbiases = hidbiases + hidbiasinc;


%%%%%%%%%%%%%%%% END OF UPDATES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


 end        %结束该批次的权重更新
  fprintf(1, 'epoch %4i error %6.1f  \n', epoch, errsum); 
end;        %权重更新迭代次数,结束该层的权重更新

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值