PyTorch 报错:TypeError: exceptions must derive from BaseException

PyTorch 报错:TypeError: exceptions must derive from BaseException

 

其实是个低级错误,我个人认为是因为没有找到要运行的载体。以自己的代码为例:

我在 base_options.py 里面设置 --netG 的参数只能在这几个里面选择:

self.parser.add_argument('--netG', type=str, default='p2hed', choices=['p2hed', 'refineD', 'p2hed_att'], help='selects model to use for netG')

但是我在选择 netG 时的代码写成了:

def define_G(input_nc, output_nc, ngf, netG, n_downsample_global=3, n_blocks_global=9, n_local_enhancers=1, 
             n_blocks_local=3, norm='instance', gpu_ids=[]):    
    norm_layer = get_norm_layer(norm_type=norm)     
    if netG == 'p2hed':    
        netG = DDNet_p2hED(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, norm_layer)
    elif netG == 'refineDepth':
        netG = DDNet_RefineDepth(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, n_local_enhancers, n_blocks_local, norm_layer)
    elif netG == 'p2h_noatt':        
        netG = DDNet_p2hed_noatt(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, n_local_enhancers, n_blocks_local, norm_layer)
    else:
        raise('generator not implemented!')
    #print(netG)
    if len(gpu_ids) > 0:
        assert(torch.cuda.is_available())   
        netG.cuda(gpu_ids[0])
    netG.apply(weights_init)
    return netG

注意,这里没没有 ‘rfineD’ 这个选项,所以当运行代码时,程序找不到 netG 该选择那个网络,故而报错。

 

其实,把上面那个代码里面的  “ elif netG == 'refineDepth': ” 改成 “elif netG == 'refineD':” 就可以了。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值