题意:有 n 个数,你不知道它们的值, 然后又有 m 行数,每行 a ,b ,c,表示 a 到 b 之间所有数的和为c(包含了第a个和第b个数)。但是这m行数里面有些是错的,就是与前面给的条件相冲突的,求有几行数据是错的。
思路:用并查集,同样,还是需要一个辅助数组r[]记录每一个点跟根节点的关系。
首先我们可以把问题稍微转化一下,就是如果已知[3,6],[7,10]俩个区间内各自所有数的和,那么就可以[3,10]内所有数的和,可是,这俩个区间根本就不衔接,所有要稍微处理一下,将左区间值减1,就变成了[2,6],[6,10],这样就方便处理了。
既然这样的话,[2,6]区间内所有数的和就完全可以等价于点2到点7之间的距离了。
对于r[a]=r[y]+sum-r[x]
其中r[y]表示y到b的距离,r[x]表示x到a的距离,sum表示x到y的距离,
要将a接到b后面,那么r[a]很表示a到b的距离
例如:下图在一条线上有4个点,a为x的根节点,b为y的根节点。
sum
-------------
x a y b 可得出a到b的距离为r[y]+sum-r[x]
----- ------r[x] r[y]
#include<stdio.h>
#define MAXN 200010
int f[MAXN],r[MAXN];
int find(int x)
{
if(x==f[x])
return f[x];
int t=find(f[x]);
r[x]=r[x]+r[f[x]];//这里首先要对这个递归的过程很了解,当递归到某一层时,x还未接到根节点上,
//所以r[x]表示的是x到f[x]的距离,但f[x]已经接到根节点上了,所以r[f[x]]表示的是父节点到根节点的距离
//所以x到根节点的距离就直接等于r[x]+r[f[x]]
f[x]=t;
return f[x];
}
int fun(int x,int y)
{
if(x>y)
return x-y;
else y-x;
}
int Union(int x,int y,int sum)
{
int a=find(x);
int b=find(y);
if(a==b)
{
if(fun(r[x],r[y])==sum)
return 0;
else return 1;
}
else
{
f[a]=b;
r[a]=r[y]+sum-r[x];//r[y]表示y到b的距离,r[x]表示x到a的距离,sum表示x到y的距离,
// 现在要将a接到b后面,那么r[a]很表示a到b的距离,很明显就是这个式子了
return 0;
}
}
int main()
{
int n,m,i,ans,a,b,s;
while(scanf("%d %d",&n,&m)!=EOF)
{
ans=0;
for(i=0;i<=n;i++)
{
f[i]=i;
r[i]=0;
}
for(i=1;i<=m;i++)
{
scanf("%d %d %d",&a,&b,&s);
a--;//左区间减一,方便处理
if(Union(a,b,s))
ans++;
}
printf("%d\n",ans);
}
return 0;
}