【剑指offer】9. 斐波那契数列

题目描述

大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)。
n<=39

思路

《剑指offer》P73
书中指出,很容易想到的递归解法,也存在很明显的效率问题,如下图:
在这里插入图片描述
可以看出该树中很多节点是重复的,算法的时间复杂度是以n的指数形式递增的,因此本题如果用递归做则会超时。

code

# -*- coding:utf-8 -*-
class Solution:
    def Fibonacci(self, n):
        # write code here
        if n == 0 or n == 1:
            return n
        smallNumber = 0
        bigNumber = 1
        res = 0
        for i in range(2, n + 1):
            res = smallNumber + bigNumber
            smallNumber = bigNumber
            bigNumber = res
        return res

拓展

1. 青蛙跳台阶

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

# -*- coding:utf-8 -*-
class Solution:
    def jumpFloor(self, number):
        # write code here
        if number == 0 or number == 1:
            return 1
        smallNumber = 1
        bigNumber = 1
        res = 0
        for i in range(2, number + 1):
            res = smallNumber + bigNumber
            smallNumber = bigNumber
            bigNumber = res
        return res
2. 变态跳台阶

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

思路

f ( 0 ) = 1 f(0)=1 f(0)=1
f ( 1 ) = 1 f(1)=1 f(1)=1
······
f ( n ) = f ( 0 ) + f ( 1 ) + ⋅ ⋅ ⋅ + f ( n − 1 ) f(n)=f(0)+f(1)+···+f(n-1) f(n)=f(0)+f(1)++f(n1)
f ( n + 1 ) = f ( 0 ) + f ( 1 ) + ⋅ ⋅ ⋅ + f ( n − 1 ) + f ( n ) f(n+1)=f(0)+f(1)+···+f(n-1)+f(n) f(n+1)=f(0)+f(1)++f(n1)+f(n)
由数学归纳法可得:
f ( n + 1 ) − f ( n ) = f ( n ) f(n+1)-f(n)=f(n) f(n+1)f(n)=f(n)
f ( n + 1 ) = 2 ∗ f ( n ) f(n+1)=2*f(n) f(n+1)=2f(n)
因此,可以得到公式:
f ( n ) = f(n)= f(n)=
f ( n ) = { 1 , n = 0 1 , n = 1 2 ∗ f ( n − 1 ) , n &gt; 1 f(n)= \begin{cases} 1, &amp; \text {$n=0$} \\ 1, &amp; \text {$n=1$} \\ 2*f(n-1), &amp; \text{$n&gt;1$} \end{cases} f(n)=1,1,2f(n1),n=0n=1n>1
可见该问题与斐波那契数列为同类问题。

# -*- coding:utf-8 -*-
class Solution:
    def jumpFloorII(self, number):
        # write code here
        if number == 0 or number == 1:
            return 1
        preNumber = 1
        res = 0
        for i in range(2, number + 1):
            res = preNumber * 2
            preNumber = res
        return res
3. 矩阵覆盖

我们可以用21的小矩形横着或者竖着去覆盖更大的矩形。请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

思路
推理过程同斐波那契数列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值