Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
For example,
Given nums = [1,3,-1,-3,5,3,6,7], and k = 3.
Window position Max
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
Therefore, return the max sliding window as [3,3,5,5,6,7].
Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.
Follow up:
Could you solve it in linear time?
#include "stdafx.h"
#include<vector>
#include<set>
#include<map>
#include <functional>
#include<iostream>
using namespace std;
class Solution {
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
vector<int>re;
if(nums.empty())
return re;
if(k==1)
return nums;
set<int,std::greater<int>>aa;
map<int,int>count;
for(int i=0;i<k;i++)
{
count[nums[i]]++;
aa.insert(nums[i]);
}
re.push_back(*aa.begin());
for(int i=1;i<=nums.size()-k;i++)
{
count[nums[i-1]]--;
if(count[nums[i-1]]==0)
aa.erase(aa.find(nums[i-1]));
count[nums[i+k-1]]++;
aa.insert(nums[i+k-1]);
re.push_back(*aa.begin());
}
return re;
}
};
int _tmain(int argc, _TCHAR* argv[])
{
Solution sl;
int aa[6]={1,3,1,2,0,5};
vector<int>nums(aa,aa+6);
vector<int>re=sl.maxSlidingWindow(nums,3);
system("pause");
return 0;
}
accepted