推荐系统冷启动问题

本文介绍了推荐系统在用户、物品和系统层面的冷启动问题,提出了利用用户注册信息、物品内容信息、用户反馈和专家标注等方式解决。通过用户人口统计学信息和站外行为数据进行初步推荐,让用户评分收集兴趣,利用物品内容相似度和专家标注来完善个性化推荐。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、冷启动问题简介

如何在没有大量用户数据的情况下设计个性化推荐系统并让用户对推荐结果满意从而愿意使用推荐系统,就是冷启动问题。

1.  分类(3类):

1)用户冷启动:如何给新用户做个性化推荐

2)物品冷启动:如何将新物品推荐给可能对其感兴趣的用户。在新闻网站等时效性很强的网站中非常重要。

3)系统冷启动:如何在一个新开发的网站上设计个性化推荐,从而在网站刚发布时就让用户体验到个性化推荐服务。没有用户,只有一些物品信息。

二、利用用户注册信息解决冷启动问题

即利用年龄、性别等数据。推荐一些热门商品(该方法粒度较粗)。如若是女性,则推荐女性都喜欢的商品。

用户注册信息含3种:

1.  人口统计学信息。如年龄、性别、职业、学历等。这些特征对预测用户的兴趣有很重要的作用。代表系统是lifestyle finder。

基本流程如下:获取用户注册信息->根据用户的注册信息对用户分类->给用户推荐他所属分类中用户喜欢的物品

实际应用中也可考虑组合特征,如将年龄性别作为一个特征。不过在使用组合时需注意用户不一定具有所有特征(这是因为用户不一定填写所有信息)。

核心问题是计算每种特征的用户喜欢的物品,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值