上下文包括用户访问推荐系统的时间、地点、心情等。
一、时间上下文信息
1. 时间效应简介
用户兴趣是变化的。因为用户自身原因发生的变化。如小时候、长大了;工作时间增加等。若要准确用户现在的兴趣,应更关注用户最近的行为。这样只针对渐变的用户兴趣,对突变的用户兴趣很难起作用
物品有生命周期。如电影,受上映时间影响,受新闻事件影响。需考虑物品在该时刻是否已过时。
季节效应。反映时间本身对用户兴趣的影响。节日本身也有季节效应。
2. 系统时间特性的分析
推荐系统变成了时变系统,用户的行为数据会变成时间序列。含时间信息的用户行为数据集由三元组(u,i,t)构成,表示用户u在时刻t对物品i产生过行为。
1)物品的生存周期和系统的时效性
如新闻网站中新闻的生存周期较短。可用如下指标度量物品的生存周期。
(1)物品平均在线天数:和物品的流行度成正比。若用户经常查询该物品,则有较长的生存周期。
(2)相隔T天系统物品流行度向量的平均相似度。去系统中相邻T天的两天,计算两天的物品流行度,得到两个流行度向量。计算这两个向量的相似度,若相似性大,说明系统的时效性不强,物品的平均在线时间较长。所有数据集中相似度都随T的增加而下降,但下降速率是不同的。
3. 推荐系统的实时性
用户兴趣的变化体现在用户不断增加的新行为中。亚马逊并非每几十秒刷