隐语义模型(LFM)

LFM是一种基于机器学习的推荐系统算法,通过隐含特征连接用户兴趣和物品。它通过对用户行为的统计自动聚类物品,找出潜在主题,然后根据用户兴趣分类进行推荐。LFM在评分预测问题上表现出色,但在稀疏数据集和实时推荐上面临挑战。在实际应用中,如雅虎新闻个性化推荐,LFM需要改进以解决实时性问题。

该算法最早在文本领域被提出,用于找到文本的隐含语义。核心思想是通过隐含特征(latent  factor)联系用户兴趣和物品(item)。是基于机器学习的方法。找出潜在的主题和分类。基于用户的行为对item进行自动聚类,划分到不同类别/主题,即用户的兴趣。

算法实例:假设用户A喜欢的音乐是小清新、吉他伴奏的(即所谓的latent  factor),则若一个歌曲(item)含这两个标签就推荐给用户。

一、原始算法(参数:隐特征个数F、学习率a、正则化参数λ、负/正样本比例r)

背景:两个用户A、B的读书列表,由此给用户推荐图书

解决方法:法1:UserCF——给用户推荐和他兴趣相似用户喜欢的书

    法2:ItemCF——给用户推荐和他们已看过的书相似的书

    法3:基于兴趣分类(LFM)。对于某用户,先得到他的兴趣分类,再从分类中挑选他可能喜欢的物品。

技术点:

1.  如何给物品进行分类?

对于一个用户来说,他们可能有不同的兴趣。就以作者举的豆瓣书单的例子来说,用户A会关注数学,历史,计算机方面的书,用

### 隐语义 LFM 模型 Python 代码实现 隐语义模型(Latent Factor Model, LFM)通过引入潜在因子来表示用户和物品之间的关系,从而能够更好地捕捉数据中的隐藏模式。下面是一个基于矩阵分解方法的简单隐语义模型实现。 #### 数据准备 为了训练LFM模型,通常需要一个评分矩阵作为输入。这里假设有一个简单的用户-项目评分表: ```python import numpy as np from sklearn.metrics.pairwise import cosine_similarity ratings = { 'Alice': {'Item1': 5, 'Item2': 3}, 'Bob': {'Item1': 4, 'Item3': 2}, 'Charlie': {'Item2': 1, 'Item3': 5} } # 将字典转换成稀疏矩阵形式 users = list(ratings.keys()) items = set() for user in ratings.values(): items.update(user.keys()) n_users = len(users) n_items = len(items) item_indices = {item: i for i, item in enumerate(sorted(items))} user_indices = {user: i for i, user in enumerate(users)} rating_matrix = np.zeros((n_users, n_items)) for user, scores in ratings.items(): uid = user_indices[user] for item, score in scores.items(): rating_matrix[uid][item_indices[item]] = score ``` #### 训练LFM模型 接下来定义并训练LFM模型函数,该过程涉及初始化随机权重向量P和Q,并利用梯度下降法更新这些参数直到收敛为止。 ```python def lfm_train(R, K=2, steps=5000, alpha=0.0002, beta=0.02): """ 使用显式反馈的数据集训练LFM模型 参数: R -- 用户-项目的评分矩阵 (m x n), m代表用户的数量,n代表商品的数量. K -- 主成分个数(即隐含特征维度). steps -- 迭代次数. alpha -- 学习速率. beta -- 正则项系数. 返回值: P,Q -- 分解后的两个低秩矩阵(m×K 和 K×n),它们相乘可以近似原始R矩阵. """ N = len(R) # Number of users M = len(R[0]) # Number of movies/items P = np.random.rand(N,K) Q = np.random.rand(M,K) for step in range(steps): eij_sum_square_error = 0 for u in range(len(R)): for i in range(len(R[u])): if R[u][i]>0: eui=R[u][i]-np.dot(P[u,:],Q[i,:].T) for k in range(K): P[u][k]=P[u][k]+alpha*(eui*Q[i][k]-beta*P[u][k]) Q[i][k]=Q[i][k]+alpha*(eui*P[u][k]-beta*Q[i][k]) eij_sum_square_error += pow(eui, 2) if eij_sum_square_error<0.001: break return P, Q.T ``` 此部分实现了基本版的LFM算法,在实际应用中可能还需要考虑更多因素如偏置项、时间衰减效应等以提高预测精度[^3]。 #### 应用LFM进行推荐 一旦获得了P和Q这两个矩阵之后就可以用来做个性化推荐了: ```python P, Qt = lfm_train(rating_matrix) predicted_ratings = np.dot(P,Qt) print("Predicted Ratings:\n", predicted_ratings) ``` 上述代码展示了如何构建一个基础版本的隐语义模型以及怎样运用它来进行电影或其他产品的推荐服务。当然这只是一个非常简化例子,在真实场景下还需加入更多的优化措施和技术细节处理。
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值