import numpy as np
def triangle_wave(x, c, c0, hc):
x = x - int(x) # 三角波的周期为1,因此只取 x 坐标的小数部分进行计算
if x >= c:
r = 0.0
elif x < c0:
r = x / c0 * hc
else:
r = (c - x) / (c - c0) * hc
return r
x = np.linspace(0, 2, 1000)
y1 = np.array([triangle_wave(t, 0.6, 0.4, 1.0) for t in x])
"""
通过 frompyfunc()可以将计算单个值的函数转换为一个能对数组中每个元素进行计算的
ufunc 函数。frompyfunc(func,nin,nout)
func 是计算单个元素的函数,nin 是 func 输入参数的个数,nout 是 func 返回值的个
数。
"""
triangle_ufunc1 = np.frompyfunc(triangle_wave, 4, 1)
y2 = triangle_ufunc1(x, 0.6, 0.4, 1.0) # 结果和y1是一样的
"""
广播(broadcasting)处理,对于形状不同的数组进行计算时,会自动补齐
"""
a = np.arange(0, 60, 10).reshape(-1, 1)
# [[ 0], [10], [20], [30], [40], [50]] shape(6,1)
b = np.arange(0, 5)
# [0, 1, 2, 3, 4]shape(5,0)
print('a+b: \n', a + b)
a = a.repeat(5, axis=1)
numpy-自定义ufunc函数和广播
最新推荐文章于 2024-03-31 07:00:00 发布
本文详细介绍了NumPy库中的自定义UFunc(通用函数)及其广播功能。通过自定义UFunc,可以实现高效的数据操作。广播机制允许不同形状的数组在计算时自动调整大小,以适应彼此,极大地提升了数值计算的灵活性。
摘要由CSDN通过智能技术生成