HDU 4746 Mophues(莫比乌斯反演)

这道题是跟着秦总博客学的:附上链接:秦总博客

f(d) 表示满足 d=gcd(x,y) 1<=x<=n,1<=y<=m 的对数。

F(d) 表示满足 d|gcd(x,y) 1<=x<=n,1<=y<=m 的对数。

可知:

F(d)=ndmd

f(x)=x|dμ(dx)F(d)

k 是满足质因子个数小于p的数。枚举每一个 k kf(k)就是所求的答案。

ans=kf(k)=kk|dμ(dk)F(d)

展开:

ans=kf(k)=kk|dμ(dk)ndmd

算一下现在的复杂度:

o(n) 线筛出 μ(x) ,枚举每一个 k ,因为对于每一个k对应的满足条件的

d nk个。

一个事实: o(ni=11i) 复杂度为 o(logn)

所以每一个询问复杂度是 o(nlogn) ,总的复杂度就为 o(qnlogn+n) ,可以看出来跪了。

每次询问能接受的复杂度应该是 o(logn) 或者是 o(n) 级别的。

再来看表达式:

ans=kf(k)=kk|dμ(dk)ndmd

可以推出:

ans=dndmdk|dμ(dk)

预处理出 sum(d)=k|dμ(dk) ,这里还有一个问题: k 的质因子树要保证小于p个。

1...5105 质因子数最多有 log(5105) 个,即不超过19个,这样原来的 sum(d) 再加上一维: sum(p,d) 即可。

此时, k|dμ(dk) 在每次查找中的复杂度变成了 o(1) ,现在的问题变成了如何在合适的复杂度内找出 dndmd 的值?

这里用到分块加速的方法:

因为 ni 是向下取整,对于一个 i 我们一定能找到一个区间[i,i]使得所有 ni 在该区间内取值都相同。

例:
p=ni
p<=nj<p+1 nj 的取值都是 p
p<=nj<p+1np+1<j<=np

枚举 i 只需要找到右端点即可,所有我们只需要j的右端点。即:

i=nni

原式中是 dndmd ,每次右端点都取 min(nni,mmi) 即可

这样在求和中不需要 o(n) 的遍历,看别人的博客说复杂度是 o(n) ,虽然我不会证。

此时 dndmd 的复杂度降到了 o(n) 。每次 sum(p,d)=k|dμ(dk) 不再是一个完整区间的和,再维护一个前缀后即可在 o(1) 复杂度内搞定 k|dμ(dk) sum(p,d) 的值需要 o(nogn) 复杂度搞定。

所以总的复杂度就是 o(qn+n+nlogn)

下面是代码部分:

#include <bits/stdc++.h>
#define LL long long
#define FOR(i,x,y)  for(int i = x;i < y;++ i)
#define IFOR(i,x,y) for(int i = x;i > y;-- i)

using namespace std;

const int maxn = 500050;

int prime[maxn],mu[maxn],cnt[maxn];
int sum[20][maxn];
bool check[maxn];

void Mobius(){
    memset(check,false,sizeof(check));
    mu[1] = 1;
    prime[0] = 0;
    cnt[1] = 0;
    FOR(i,2,maxn){
        if(!check[i]){
            prime[++prime[0]] = i;
            mu[i] = -1;
            cnt[i] = 1;
        }
        FOR(j,1,prime[0]+1){
            if(i*prime[j] >= maxn)  break;
            check[i*prime[j]] = true;
            cnt[i*prime[j]] = cnt[i] + 1;
            if(i % prime[j]){
                mu[i*prime[j]] = -mu[i];
            }
            else{
                mu[i*prime[j]] = 0;
                break;
            }
        }
    }
}

int n,m,p;

void init(){
    Mobius();
    memset(sum,0,sizeof(sum));
    //sum[i][j]表示所有能整除j的质因子个数为i的(x,y)的对数
    FOR(i,1,maxn){
        for(int j = i;j < maxn;j += i){
            sum[cnt[i]][j] += mu[j/i];
        }
    }
    //sum[i][j]表示所有能整除j的质因子个数<=i的(x,y)的对数
    FOR(j,1,maxn){
        FOR(i,1,20){
            sum[i][j] += sum[i-1][j];
        }
    }
    //sum[i][j]表示sum[i][0]+sum[i][1]+...+sum[i][j]的前缀和
    FOR(j,1,maxn){
        FOR(i,0,20){
            sum[i][j] += sum[i][j-1];
        }
    }
}

void work(){
    if(p >= 20) {printf("%I64d\n",(LL)n*(LL)m);return;}
    int mx = min(n,m);
    LL ans = 0;
    for(int i = 1;i <= mx;){
        LL a = n/i,b = m/i;
        LL now = min(n/a,m/b);
        ans += a*b*(sum[p][now]-sum[p][i-1]);
        i = now+1;
    }
    printf("%I64d\n",ans);
}

int main(){
    //freopen("test.in","r",stdin);
    init();
    int T;  scanf("%d",&T);
    while(T--){
        scanf("%d%d%d",&n,&m,&p);
        work();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值