HDU 6134 莫比乌斯反演

博客介绍了如何利用莫比乌斯反演解决数论问题,具体到HDU 6134题目,通过变换求解f(n)的公式,将复杂度优化至O(n+Tn)。文章详细阐述了从经典转化到变量替换,再到预处理优化的过程。
摘要由CSDN通过智能技术生成

题目链接


题意:
已知 n &lt; = 1 e 6 n&lt;=1e6 n<=1e6,求:
f ( n ) = ∑ i = 1 n ∑ j = 1 i ⌈ i j ⌉ [ g c d ( i , j ) = = 1 ] f(n) = \sum_{i=1}^n\sum_{j=1}^i \lceil\frac{i}{j}\rceil[gcd(i,j) == 1] f(n)=i=1nj=1iji[gcd(i,j)==1]

思路:
首先套上莫比乌斯反演的经典转化:
∑ d ∣ n μ ( d ) = [ n = = 1 ] \sum_{d|n}\mu(d) = [n == 1] dnμ(d)=[n==1]

得:
f ( n ) = ∑ i = 1 n ∑ j = 1 i ⌈ i j ⌉ ∑ d ∣ g c d ( i , j ) μ ( d ) f(n) = \sum_{i=1}^n\sum_{j=1}^i \lceil\frac{i}{j}\rceil \sum_{d|gcd(i,j)}\mu(d) f(n)=i=1nj=1iji​</

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值