[tianchi]移动推荐算法大赛[二]

本文详述了在移动推荐算法大赛中,如何通过特征工程提升预测效果。作者分析了用户行为随时间减弱的影响,选取距考察日一周内的数据,并依据user、item、item_category构建U、I、C类特征,以及UI、UC、IC组合特征,以解决U-I购买行为的分类问题。文章介绍了特征构建的六大类和方法,旨在优化模型的预测能力。
摘要由CSDN通过智能技术生成

有这么一句话在业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动,目的是最大限度地从原始数据中提取特征以供算法和模型使用。

想了解更多特征工程的相关知识看这里->特征工程到底是什么?
这里写图片描述

上一篇文章中只是根据前一天的交互行为,预测第二天的购买行为,最终的f1得分为4.6%,精确度有待提升。
为了提高预测效率,本文基于历史数据进行特征构建,特征构建时的一些思路如下:
1)由于用户行为对购买的影响随时间减弱,根据分析,用户在一周之前的行为对考察日是否购买的影响已经很小,故而只考虑距考察日一周以内的特征数据。

2)由于数据来源于垂直电商,其特点是线上购买线下消费,猜测其购买行为具有一定的周期性,进一步猜测行为周期为一个星期。待预测目标考察日为 12.19 ,是星期五,所以分割出11.18~12.18数据中的四段以星期五为考察日,一周为考察期的数据,一共有4组,其中一组涉及双十二异常期,故而省区,还剩下三组数据如下:

part 1 - train: 11.22~11.27 -> 11.28;
part 2 - train: 11.29~12.04 -> 12.05;
part 3 - pred: 12.13~12.18 (-> 12.19);

其中 part 1 和 part 2 可作为模型训练和验证数据集,part 3 为测试数据集;

3)针对当前业务背景,考虑从user、item、item_category三大基本维度及其组合入手进行特征构建,简称U、I、C。

4)由于问题已被明确为 U-I 是否发生购买行为(标记label取{0,1])的分类问题,最终的特征数据均要合并到生成以 U-I 为index(key)的样本集上来。进一步地,如要考虑所有可能的 U-I ,必将面临组合爆炸的问题,所以这里只关注在距考察日一周以内出现过的 U-I 。

这里将所需构建的特征分为六大类:U、I、C、UI、UC、IC,对每类分别结合行为次数、时间、排序等视角设计特征。考虑到样本规模,特征数量不宜太少,这里我们设计了约100个特征来进行第一季的数据任务,具体的特征选择及定义见下表:

特征名称 所属类别 特征含义 特征作用 特征数量
u_b_count_in_n(n=1/3/6) U 用户在考察日前n天的行为总数计数 反映了user_id的活跃度(不同时间粒度:最近1天/3天/6天) 3
u_bi_count_in_n(i=1/2/3/4,n=1/3/6) U 用户在考察日前n天的各项行为计数 反映了user_id的活跃度(不同时间粒度),反映了user_id的各项操作的活跃度,折射出user_id的购买习惯 12
u_b4_rate U 用户的点击购买转化率 反映了用户的购买决策操作习惯 1
u_b4_diff_hours U 用户的点击购买平均时差 反映了用户的购买决策时间习惯 1
i_u_count_in_n I 商品在考察日前n天的用户总数计数 反映了item_id的热度(用户覆盖性) 3
i_b_count_in_n I 商品在考察日前n天的行为总数计数 反映了item_id的热度(用户停留性) 3
i_bi_count_in_n I 商品在考察日前n天的各项行为计数 反映了item_id的热度(用户操作吸引),折射出item_id产生的购买习惯特点 12
i_b4_rate I 商品的点击购买转化率 反映了商品的购买决策操作特点 1
i_b4_diff_hours I 商品的点击购买平均时差 反映了商品的购买决策时间特点 1
c_u_count_in_n C 类别在考察日前n天的用户总数计数 反映了item_category的热度(用户覆盖性) 3
c_b_count_in_n C 类别在考察日前n天的行为总数计数 反映了item_category的热度(用户停留性) 3
c_bi_count_in_n C 类别在考察日前n天的各项行为计数 反映了item_category的热度(用户操作吸引),包含着item_category产生的购买习惯特点 12
c_b4_rate C 类别的点击购买转化率 反映了item_category的购买决策操作特点 1
c_b4_diff_hours C 类别的点击购买平均时差 反映了item_category的购买决策时间特点 1
ic_u_rank_in_c IC 商品在所属类别中的用户人数排序 反映了item_id在item_category中的热度排名(用户覆盖性) 1
ic_b_rank_in_c IC 商品在所属类别中的行为总数排序 反映了item_id在item_category中的热度排名(用户停留性) 1
ic_b4_rank_in_c IC 商品在所属类别中的销量排序 反映了item_id在item_category中的热度排名(销量) 1
ui_b_count_in_n UI 用户-商品对在考察日前n天的行为总数计数 反映了user_id - item_id的活跃度 3
ui_bi_count_in_n UI 用户-商品对在考察日前n天的各项行为计数 反映了user_id - item_id的活跃度,反映了user_id - item_id的各项操作的活跃度,对应着user_id - item_id的购买习惯 12
ui_bi_last_hours UI 用户-商品对各项行为上一次发生距考察日的时差 反映了user_id - item_id的活跃时间特征 4
ui_b_count_rank_in_n_in_u UI 用户商品对的行为在用户所有商品中的排序 反映了user_id对item_id的行为偏好 3
ui_b_count_rank_in_n_in_uc UI-UC 用户-商品对的行为在用户-类别对中的排序 反映了user_id对item_category中的各个item_id的行为偏好 3
uc_b_count_in_n UC 用户-类别对在考察日前n天的行为总数计数 反映了user_id - item_category的活跃度 3
uc_bi_count_in_n UC 用户-类别对在考察日前n天的各项行为计数 反映了user_id -item_category的活跃度,反映了user_id -item_category的各项操作的活跃度,对应着user_id -item_category的购买习惯 12
uc_bi_last_hours UC 用户-类别对各项行为上一次发生距考察日的时差 反映了user_id -item_category的活跃时间特征 4
uc_b_count_rank_in_n_in_u UC 用户-类别对的行为在用户所有商品中的排序 反映了user_id对item_category的行为偏好 3

1、数据基本处理

import pandas as pd
import numpy as np

user_behavior_file = '../fresh_comp_offline/tianchi_fresh_comp_train_user.csv'
item_file = '../fresh_comp_offline/tianchi_fresh_comp_train_item.csv'

#step1:查看、处理user表格
userAll = pd.read_csv(user_behavior_file, usecols=['user_id','item_id','behavior_type','time'], encoding='utf-8')
# print(userAll.head())
# print(userAll.info())
# print(userAll.duplicated().sum())   #11505107

#step2:查看、处理item子集表格
itemSub = pd.read_csv(item_file, usecols=['item_id', 'item_category'], encoding='utf-8')
# print(itemSub.item_id.is_unique)  #False
# print(itemSub.item_id.value_counts().head())
# print(itemSub.info())
itemSet = itemSub[['item_id', 'item_category']].drop_duplicates()
# print(itemSet.info())

#step3:取user与item子集的交集
userSub = pd.merge(userAll, itemSet, how='inner') #on 用于连接的列名,必须同时存在于左右两个DataFrame对象中,如果未指定,则以left和right列名的交集作为连接键
userSub.to_csv('./way3Data/user_item_category.csv', index=False, encoding='utf-8')
# print(userSub.info()) #Int64Index: 2084859 entries, 0 to 2084858  memory usage: 95.4+ MB
# print(userSub.head())

#step4:处理时间数据
userSub = pd.read_csv('./way3Data/user_item_category.csv', usecols=['user_id','item_id', 'item_category', 'behavior_type', 'time'], encoding='utf-8', parse_dates=True)
# print(userSub.info())
# print(userSub.head())
userSub['time_day'] = pd.to_datetime(userSub.time.values).date
userSub['time_hour'] = pd.to_datetime(userSub.time.values).time
# print(userSub.info())
userSub.drop('time', axis=1, inplace=True)
# print(userSub.info())
# print(userSub.head())
userSub.to_csv('./way3Data/user_item_category_datetime.csv', index=False, encoding='utf-8')#将datetime列拆开并保存

#step5:将交互行为进行哑变量编码
typeDummies = pd.get_dummies(userSub['behavior_type'], prefix='type')  #onehot哑变量编码
userSub = pd.concat([userSub, typeDummies], axis=1)#将哑变量特征加入到表中
# print(userSub.info())
# print(userSub.head())
userSub.drop('behavior_type', axis=1, inplace=True)
userSub = userSub[['user_id', 'item_id', 'item_category', 'type_1', 'type_2', 'type_3', 'type_4', 'time_day', 'time_hour']]#调整dataframe列顺序
# print(userSub.info())
# print(userSub.head())
userSub.to_csv('./way3Data/user_item_datetime_type.csv', index=False, encoding='utf-8')#将behavior列进行哑变量编码处理并保存

2、处理数据并进行U类(user)类特征构建

import pandas as pd

#基于user_id、item_id、category三大基本维度进行特征构建,
# 这里将所需构建的特征分为六大类:U、I、C、UI、UC、IC

#step1:读取要用到的数据
userAll = pd.read_csv('./way3Data/user_item_datetime_type.csv', encoding='utf-8')
# print(userAll.info())
# print(userAll.head())

#step2:构建U类特征
#①u_b_count_in_n(n=1/3/6; 用户在考察日前n天的行为总量计数,考察日取2014-12-17)
userSub = userAll[userAll['time_day'] == '2014-12-16']
userSub = userSub[['user_id', 'item_id', 'item_category', 'type_1', 'type_2', 'type_3', 'type_4']]
userSub = userSub.groupby(['user_id', 'item_id', 'item_category'], as_index=False).sum()
userSub['u_b_count_in_1'] = userSub['type_1']+userSub['type_2']+userSub['type_3']+userSub['type_4']
userSub.drop(['type_1', 'type_2', 'type_3', 'type_4'], axis=1, inplace=True)
# print(userSub.info())
# print("最大值:", userSub['behavior'].max())   #20
u_b_count_in_1 = userSub.copy()
# print(u_b_count_in_1.info())
# print(u_b_count_in_1.head())
# usertmp = userSub[['user_id', 'item_id', 'item_category']]
# print(usertmp.duplicated().sum())# 重复行为0

userSub = userAll[(userAll['time_day'] > '2014-12-13') & (userAll['time_day'] < '2014-12-17')]
userSub = userSub[['user_id', 'item_id', 'item_category', 'type_1', 'type_2', 'type_3', 'type_4']]
userSub = userSub.groupby(['user_id', 'item_id', 'item_category'], as_index=False).sum()
userSub['u_b_count_in_3'] = userSub['type_1']+userSub['type_2']+userSub['type_3']+userSub['type_4']
userSub.drop(['type_1', 'type_2', 'type_3', 'type_4'], axis=1, inplace=True)
u_b_count_in_3 = userSub.copy()
# print(u_b_count_in_3.info())
# print(u_b_count_in_3.head())

userSub = userAll[(userAll['time_day'] > '2014-12-10') & (userAll['time_day'] < '2014-12-17')]
userSub = userSub[['user_id', 'item_id', 'item_category', 'type_1', 'type_2', 'type_3', 'type_4']]
userSub = userSub.groupby(['user_id', 'item_id', 'item_category'], as_index=False).sum()
userSub['u_b_count_in_6'] = userSub['type_1']+userSub['type_2']+userSub['type_3']+userSub['type_4']
userSub.drop(['type_1', 'type_2', 'type_3', 'type_4'], axis=1, inplace=True)
u_b_count_in_6 = userSub.copy()
# print(u_b_count_in_6.info())
# print(u_b_count_in_6.head())

u_b_count_in_n = pd.merge(u_b_count_in_6, u_b_count_in_3, on=['user_id', 'item_id', 'item_category'], how='left').fillna(0.0)
u_b_count_in_n = pd.merge(u_b_count_in_n, u_b_count_in_1, on=['user_id', 'item_id', 'item_category'], how='left').fillna(0.0)
# print(u_b_count_in_n.info())
# print(u_b_count_in_n.head())
u_b_count_in_n.to_csv('./way3Data/u_b_count_in_n.csv', index=False, encoding='utf-8')

#②u_bi_count_in_n(n=1/3/6;i=1/2/3/4; 用户在考察日前n天的各类行为总量计数,考察日取2014-12-17)
userSub = userAll[userAll['time_day'] == '2014-12-16']
userSub = userSub[['user_id', 'item_id', 'item_category', 'type_1', 'type_2', 'type_3', 'type_4']]
userSub = userSub.groupby(['user_id', 'item_id', 'item_category'], as_index=False).sum()
userSub['u_b1_count_in_1'] = userSub['type_1']   #用户在考察日前1天的浏览(1)行为总量计数
userSub['u_b2_count_in_1'] = userSub['type_2']   #用户在考察日前1天的收藏(2)行为总量计数
userSub['u_b3_count_in_1'] = userSub['type_3']   #用户在考察日前1天的加购物车(3)行为总量计数
userSub['u_b4_count_in_1'] = userSub['type_4']   #用户在考察日前1天的购买(4)行为总量计数
userSub.drop(['type_1'], axis=1, inplace=True)
userSub.drop(['type_2'], axis=1, inplace=True)
userSub.drop(['type_3'], axis=1, inplace=True)
userSub.drop(['type_4'], axis=1, inplace=True)
u_bi_count_in_1 = userSub.copy()
# print(u_bi_count_in_1.info())
# print(u_bi_count_in_1.u_b1_count_in_3.max())

userSub = userAll[(userAll['time_day'] > '2014-12-13') & (userAll['time_day'] < '2014-12-17')]
userSub = userSub[['user_id', 'item_id', 'item_category', 'type_1', 'type_2', 'type_3', 'type_4']]
userSub = userSub.groupby(['user_id', 'item_id', 'item_category'], as_index=False).sum()
userSub['u_b1_count_in_3'] = userSub['type_1']   #用户在考察日前3天的浏览(1)行为总量计数
userSub['u_b2_count_in_3'] = userSub['type_2']
userSub['u_b3_count_in_3'] = userSub['type_3']
userSub['u_b4_count_in_3'] = userSub['type_4']
userSub.drop(['type_1'], axis=1, inplace=True)
userSub.drop(['type_2'], axis=1, inplace=True)
userSub.drop(['type_3'], axis=1, inplace=True)
userSub.drop(['type_4'], axis=1, inplace=True)
u_bi_count_in_3 = userSub.copy()
# print(u_bi_count_in_3.info())
# print(u_bi_count_in_3.u_b3_count_in_3.max())

userSub = userAll[(userAll['time_day'] > '2014-12-10') & (userAll['time_day'] < '2014-12-17')]
userSub = userSub[['user_id', 'item_id', 'item_category', 'type_1', 'type_2', 'type_3', 'type_4']]
userSub = userSub.groupby(['user_id', 'item_id', 'item_category'], as_index=False).sum()
userSub['u_b1_count_in_6'] = userSub['type_1']   #用户在考察日前6天的浏览(1)行为总量计数
userSub['u_b2_count_in_6'] = userSub['type_2']
userSub['u_b3_count_in_6'] = userSub['type_3']
userSub['u_b4_count_in_6'] = userSub['type_4']
userSub.drop(['type_1'], axis=1, inplace=True)
userSub.drop(['type_2'], axis=1, inplace=True)
userSub.drop(['type_3'], axis=1, inplace=True)
userSub.drop(['type_4'], axis=1, inplace=True)
u_bi_count_in_6 = userSub.copy()
# print(u_bi_count_in_6.info())
# print(u_bi_count_in_6.u_b2_count_in_6.max())

u_bi_count_in_n = pd.merge(u_bi_count_in_6, u_bi_count_in_3, on=['user_id', 'item_id', 'item_category'], how='left').fillna(0.0)
u_bi_count_in_n = pd.merge(u_bi_count_in_n, u_bi_count_in_1, on=['user_id', 'item_id', 'item_category'], how='left').fillna(0.0)
# print(u_bi_count_in_n.info())
# print(u_bi_count_in_n.u_b4_count_in_6.max())
u_bi_count_in_n.to_csv('./way3Data/u_bi_count_in_n.csv', index=False, encoding='utf-8')

#③u_b4_rate(用户的点击购买转化率,反映了用户的购买决策操作习惯)(此处使用大转化,不是分层转化,分层转化主要为了找出用户流失环节进而改进)
userSub = userAll[userAll['time_day'] == '2014-12-16']
userSub = userSub[['user_id', 'item_id', 'item_category', 'type_1', 'type_2', 'type_3', 'type_4']]
userSub = userSub.groupby(['user_id', 'item_id', 'item_category'], as_index=False).sum()
# usertmp = userSub[['user_id', 'item_id', 'item_category']]
# print(usertmp.duplicated().sum())
userSub['u_b4_rate'] = userSub['type_4']/(userSub['type_1']+userSub['type_2']+userSub['type_3']+userSub['type_4']).map(lambda x:x+1 if
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值