[DM实战]家用电器用户行为分析与事件识别

本文通过分析热水器用户行为,运用数据挖掘技术识别洗浴事件。首先,探讨用户使用习惯,优化产品功能。接着,抽取历史数据构建样本,进行数据探索与预处理,包括缺失值处理和属性构造。随后,建立多层神经网络模型,以11个属性为输入,训练识别洗浴事件。最后,优化模型并应用于实时数据,实现洗浴事件的自动识别。
摘要由CSDN通过智能技术生成

1、家用企业若能深入了解不同用户群的使用习惯,开发新功能,就能开拓新市场。厂商可从热水器智能操作和节能运行等多方面对产品进行优化。

热水器厂商根据洗浴事件识别模型,对不同地区的用户的用水进行识别,根据识别结果比较不同客户群客户群的客户使用习惯、加深对客户的理解等。从而,厂商可以给不同的客户群提供最适合的个性化产品、改进新产品的智能化的研发和制定相应的营销策略。

根据提供的数据实现以下目标:

1)根据热水器采集到的数据,划分一次完整用水事件。

2)在划分好的一次完整用水事件中,识别出洗浴事件。

2、对热水用户的历史用水数据进行选择性抽取,构建专家样本。

本案例对原始数据采用无放回随机抽样法抽取200家热水器用户从2014年1月1日至2014年12月31日的用水记录作为原始建模数据。

3、对步骤2)形成的数据集进行数据探索分析与预处理,包括探索用水事件时间间隔的分布、规约冗余属性、识别用水数据的缺失值,并对缺失值进行处理,根据建模的需要进行属性构造等。根据以上处理,对用水样本数据建立用水事件时间间隔识别模型和划分一次完整的用水事件模型,再在一次完整用水事件划分结果的基础上,剔除短暂用水事件,缩小识别范围。

通过频率分布直方图分析用户用水停顿时间间隔的规律性,从而探究划分一次完整用水事件的时间间隔阈值。

本案例的数据集的特点是数据量涉及上万个用户而且每个用户每天的用水数据多达数万条、存在缺失值、与分析主题无关的属性或未直接反应用水事件的属性等。在数据预处理阶段,针对这些情况相应地应用了缺失值处理、数据规约和属性构造等来解决这些问题。

4、在上一步得到的建模样本数据基础上,建立洗浴事件识别模型,对洗浴事件识别模型进行模型分析评价。

根据建模样本数据和用户记录的包含用水的用途、用水

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值