Python与机器视觉(x)图像修复

本系列博客主要分享Python在机器视觉/计算机视觉下的编程应用
cv2包是著名的视觉库OpenCV的Python实现

图像修复

很多时候遇到受损的图片我们需要利用机器视觉的手段对其进行修复,opencv中提供了inpaint函数实现了这一功能。

1.先来看一个例子
  • 首先读入图片:
import numpy as np
import cv2 as cv
img = cv.imread('src.jpg')
polluted = cv.imread('polluted.png',0)

在这里插入图片描述在这里插入图片描述
分别是原图和污损图。

  • 下面我们使用阈值分割来得到污损图的掩膜:
_,mask = cv2.threshold(cv2.cvtColor(pllute,cv2.COLOR_BGR2GRAY),10,255,cv2.THRESH_BINARY_INV)
cv2.imshow('mask',mask);cv2.waitKey(1000);cv2.destroyAllWindows()

得到如下的掩膜图;
在这里插入图片描述

  • 最后调用函数对图像进行修复
dst = cv.inpaint(polluted ,mask,3,cv.INPAINT_TELEA)
cv2.imshow('inpainted',dst)
cv2.imshow('src',src)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述在这里插入图片描述
左图是修复图,右图是原图。
img from Animade

2.参数解析

图像修复函数inpaint主要参数如下:

inpaint(src, inpaintMask, inpaintRadius, flags[, dst]) -> dst
.   这是一个利用领域信息恢复图像的函数.
.   
.   src 为输入图像
.   inpaintMask 为单通道二值图掩膜,其中非零位置为需要修复的位置
.   dst  为输出图像,与输入大小等同 .
.   inpaintRadius  为领域大小,在修复时考虑周围像素的范围
.   修复方法的flag:
.   -   **INPAINT_NS** [Navier-Stokes based方法](https://ieeexplore.ieee.org/document/990497)
.   -   **INPAINT_TELEA** [Alexandru Telea方法](https://www.tandfonline.com/doi/abs/10.1080/10867651.2004.10487596)
.   
3.原理实现

Navier-Stokes based方法
论文摘要:这种方法利用了经典流体动力学中的思想,将等照度线连续的从待修补区域周围传播到修补区域中去。主要的观点在于将图像强度视为了二维不可压缩流的流函数(stream function),其中图像强度的拉普拉斯量为流体的旋量、并将它通过矢量场定义的流函数输运到待修补区域。最终得到的算法会通过连续照度来匹配受损区域的梯度矢量。它直接依赖于流体力学中的纳维叶斯托克斯方程,具有较强的理论和数值优势。

Fast Marching Method
这篇文章提出的是基于快速行进算法的图像修复,其主要思想则是基于沿图像梯度传播平滑估计器。图像的平滑主要来自于受损图像领域的加权平均。同时将缺失的区域视为水平集,并用FMM(Fast Marching Method)来描述为图像信息的传播。

Image Prior
目前深度学习方法对于图像修复也有了很大的进展
在这里插入图片描述


ref:
1.OpencvDoc:https://docs.opencv.org/3.4/df/d3d/tutorial_py_inpainting.html
2.Deeplearning:https://arxiv.org/pdf/1711.10925.pdf
3.Code:https://github.com/atiyo/deep_image_prior
4.Fast Marching:https://blog.csdn.net/seamanj/article/details/51991067

数字图像在获取的过程中,由于光学系统的像差、 光学成像衍射、 成像系统的非线性畸变、 摄影胶片的感光的非线性、 成像过程的相对运动、 大气的湍流效应、环境随机噪声等原因, 图像会产生一定程度的退化。因此,必须采取一定的方法尽可能地减少或消除图像质量的下降,恢复图像的本来面目, 这就是图像复原, 也称为图像恢复。 图像复原图像增强有类似的地方, 都是为了改善图像。但是它们又有着明显的不同。图像复原是试图利用退化过程的先验知识使已退化的图像恢复本来面目,即根据退化的原因, 分析引起退化的环境因素,建立相应的数学模型, 并沿着使图 像降质的逆过程恢复图像。从图像质量评价的角度来看, 图像 复原就是提高图像的可理解性。而图像增强的目的是提高视感 质量,图像增强的过程基本上是一个探索的过程, 它利用人的心理状态和视觉系统去控制图像质量, 直到人们的视觉系统满意为止。 图像复原是利用退化现象的某种先验知识,建立退化现象的数学模型,再根据模型进行反向的推演运算,以恢复原来的景物图像。因而,图像复原可以理解为图像降质过程的反向过程。建立图像复原的反向过程的数学模型,就是图像复原的主 要任务。经过反向过程的数学模型的运算,要想恢复全真的景物图像比较困难。所以, 图像复原本身往往需要有一个质量标 准, 即衡量接近全真景物图像的程度,或者说,对原图像的估 计是否到达最佳的程度。 由于引起退化的因素众多而且性质不同,为了描述图像退化过程所建立的数学模型往往多种多样,而恢复的质量标准也往往存在差异性,因此图像复原是一个复杂的数学过程,图像复原的方法、技术也各不相同。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值